
Abstract

Model predictive (MPC) is a common method used in 
chemical process industries. Usually, the state space 
method is applicable for linear systems with a quadratic 
performance index to find the optimised control law 
based on a solution of the Riccatti equation. However, 
a nonlinear system can only be modeled by a fuzzy 
logic based function of the variables.  The method of 
optimal control requires a performance index to be 
met, which is not necessarily a quadratic type of index 
but a nonlinear function of the process variables. It 
could   be similarly modeled by another fuzzy inference 
system. The MPC method for such a fuzzy modeled 
state space system would be able to provide good 
predictive control for any nonlinear control system. The 
evaluation of the control steps by prediction for such a 
fuzzy model with fuzzy performance index is described 
in this paper. The optimal control steps are found 
by iterative search using the Box’s Complex search 
method over a range of control values. Then, the 
prediction outputs are checked for constraint inequality 
satisfaction, such as pressure limit for example. Such 
a control step is applied at the current time step. The 
paper describes such a technique for a nonlinear 
process with a nonlinear performance index, also with 
constraints in the process variables.
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1. Introduction

In model predictive control (Balbis et al., 2005), quite 

many calculations are made before providing a control 
step at any instant t.  The control values are updated in 
discrete time steps to the model of the plant. The model of 
the process is used in MPC to evaluate, for a set of control 
values u, the outputs of the process states. It is used to 
find how the response will be for various values of control 
input, given its current measured value. The objective is 
to obtain a control value for the current time step that will 
not transgress limiting values in future and also yield an 
optimal performance value.  After obtaining a control step 
sequence that might be meeting these three requirements 
at that instant t, the control step thus calculated is applied 
to the process. Then, at the next time step, the calculation 
for control value is repeated. The MPC technique has a 
performance index to meet. This can be similar to the 
quadratic performance involving the errors of the state 
variables. If we predict the output variables over a period 
of 5 seconds, the total loss is calculated on the basis of 
the deviations from the set points of the variables and 
the power loss due to control action exercised over 
this 5 second period.  In our aim to minimize this loss, 
control value u will be varied.  If we adjust the control 
value over a 2 second period and then leave the control 
value same for the rest of the 5 second period, then the 
response of the system during the 5 second time can be 
calculated. The principle of prediction is just this. This 
output should be within prescribed values during this 
time. The reason is that process variables cannot exceed 
certain limiting values. Also, the control value might have 
its own limits.  Once the values of u are found for discrete 
time instants during the two second period to satisfy both 
the optimisation and the constraints, the first step of such 
a calculated u is applied to the system.  During the next 
step, recalculation follows, based upon the measured 
output at the end of this step.   
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In models of process systems, the state space model is 
generally used for optimisation. That model becomes 
nonlinear in the case of actual plant.  Models chosen for 
predictive control are generally assumed to have linear 
state space relations. J. B. Rawlings describes about 
model targets and the receding horizon calculation (Box, 
1965). Dynamic Matrix Control (DMC) was the first 
model Predictive Control (MPC) algorithm introduced in 
early 1980s (Cutler & Ramaker, 1980). Nowadays, DMC 
is available in commercial industrial distributed control 
systems and process simulation software packages. This 
DMC algorithm works with a step response model. The 
step response of a nonlinear system changes with the 
value of the step and so this method is not quite good for 
totally nonlinear processes.

Most of the situations where MPC schemes are in use are 
for batch processes in chemical industry. These processes 
are nonlinear and if they are defined by a fuzzy model, 
of any type, then the state space equations pertaining to 
the variables will be used for optimisation based control 
law finding. Jairo J. Espinosa et al. (1998) present four 
algorithms to construct the controllers which are compared 
using a model of a Continuous Stirred Tank Reactor. 
A nonlinear model is essentially defined by a fuzzy 
inference system (FIS). Dhouib, Djemel& Chtourou, 
(2011) describe a principle where a nonlinear system is 
divided into a number of linear subsystems. So the linear 
model based predictive control (MPC) technique is used 
for each subsystem.

The Takagi Sugeno  model alone is capable of fitting a 
nonlinear function to a FIS (Huang et al., 2000).  Babuska 
et al. have also investigated the MPC with such a fuzzy 
logic defined model. They consider that by linearising a 
model from time to time (as the response proceeds) by 
such a FIS, it can help in dealing with the nonlinearity in 
the process. Their modeling equations are based on the 
present and future values of state variables and control 
increments. Instead of just considering the fuzzy model 
of a state space, they treat the set of all values of state 
variables for all the discrete time instants together with 
the control vector values for these instants as one fuzzy 
functional group.   In another paper, Mollov et al. (2004) 
have described a similar strategy for fuzzy inference 
based handling of the MPC scheme. They have described 
the same for a pH control scheme and for a distillation 
column with some detail. Just two membership functions 
(also trapezium types) have been assumed for this to 
simplify the calculations. 

Pena et al. (2009) also discuss a combined fuzzification of 
the optimisation problem along with the fuzzification of 
the model of the system.  In their equations, they include 
the derivatives of the optimisation function, which are 
stated as needed for finding the minimum point in the 
traverse. The method of calculating the derivatives are 
given in the paper, which is used to find the minimal point 
in the course of the predicted set of discrete  times.

A novel multiple model control strategy using both fuzzy-
based predictive control (FPC) and overall fuzzy-based 
predictive model (OFPM) has been proposed by Mazinan 
& Sadati (2010).  Concerning the strategy, the system 
must be modeled through the multiple models over 
different operating regions.

Pappa et al. (2005) have applied linear and fuzzy models 
in an MPC for a milk pasteurisation control process. 

2. Fuzzy Model in Control Systems 

It was Dr. Mamdani in London University in the year 
1975  who first paved the way for fuzzy model based 
control scheme to operate a small steam engine.

Figure 1:  System Response without Fuzzy Logic 
Controller

The controller worked well, and better than anything they 
had done with any other method.   The steam engine speed 
control graph using the fuzzy logic controller appeared as 
in Figure 2.

The engine speed approached the desired value very 
quickly, did not overshoot and remained stable. The 
calculations must have been done on a fuzzy model of 
the engine and predicted, prior to actually applying the 
control in discrete time steps. Otherwise, the response 
shown in Figure 2 would be unrealisable. The name Model 
Predictive Control was introduced much later, however.
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Figure 2:  Steam Engine Speed Control Graph 
Using the Fuzzy Logic Controller

Further, due to the non-linearity of the steam engine 
operating characteristics, as soon as the speed set-point 
was changed, the trial and error effort had to be done all 
over again to arrive at an effective control. This did not 
occur with the fuzzy logic controller, which they reported 
as adapting much better to changes, variations and non-
linearity in the system. 

There were two outputs: control of heat to the boiler and 
control of the throttle. The outputs operated independently.

3. Analysis Equations of the Model 
Predictive Control Scheme 

MPC is an optimisation based control law, and the 
performance measure J is almost always based on 
quadratic norms. In constrained finite time optimal 
control (CITOC) problem, there does not exist any simple 
closed-form expression for the solution. Instead, the 
first step in MPC is to define a prediction horizon T and 
approximate the performance measure by using a finite 
horizon. The second idea is to apply only the first control 
move of the obtained sequence UT(x(t)) to the plant and 
resolve a new finite horizon problem when we obtain new 
measurements of the current state x(t).
 1. Measure x(t) at sampling instance t.
 2. Solve the finite optimisation problem and obtain the 

optimal input sequence UT(x(t)) .
 3. Apply the first element of the sequence u0 to the 

system.
 4. Back to step 1.

Due to the computational complexity of solving the 
optimisation problem in step 2, MPC was limited to 

systems with long sampling periods, systems with only 
few state variables and rather short prediction horizons.

Figure 3:   Two Cascade Configuration for MPC

Figure 3 shows a supervisory level controller sitting over 
the conventional plant cum PID controller. The set point 
is not the difference between the output and the reference. 
The set point is provided by the predictive controller as 
per calculations based on future predicted outputs.  This 
configuration, also known as the Cascade predictive 
controller (Rawlings, 2000) that has the model predictive 
block over the existing controller and the closed loop 
system is intact as usual. The set point only changes 
with time, so that the output follows the reference with 
optimum conditions under constraints.

In the scheme shown in Figure 3, the predicted output is 
compared with the reference and generates the error signal. 
But the error signal operates not through a PID controller, 
but through a calculation involving optimisation and 
evaluates the current value of the control signal u.

As an example, if a generator speed is controlled (Figure 
4), the control value is calculated based on the model of 
the system for four time slots. Then, what the process 
output (a prediction) would be for some more time is also 
calculated. In this time, the value of the predicted output 
should lie within certain constraint values. For the four 
steps of control applied, the power spent in control, the 
loss estimated due the speed error over the entire time 
of prediction are also evaluated. The control steps (four 
numbers) are adjusted so as to minimize this cost. Thus, 
what should be control step for the current instant is 
found along with three more steps. But only the first step 
is applied. Then, the output is read again and the steps 
repeated.

The model in state space formulation, for two output 
variables y, z is :
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x Ax Bu

y C x Du
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y C x

z C x

y

y

z

’= +
= +

=

=

(1)

The model predictive control accommodates optimizing a 
cost or related function as well. In a linear model of this 
function, the performance index F is given in  terms of the 
Q and R matrices pertaining to cost evaluation based on 
the state variables x and the control variables u.

F x Qx u Ruc
T T= + (2)

Further to this, the control scheme has to meet certain 
constraints both for the state variables x and for the 

controlling function values u. These variables are not to 
exceed certain ranges, such as, pressure not to exceed 10 
bar and flow not to be less than 100 l/m.

In normal cases, such constraints can be written as linear 
inequalities.

Hx Gu+ £ 0

A graphical picture of these constraints can be as shown 
in Figure 5.

In discrete time representation, the above equations 
become:

x(k+1) = A x(k)

y(k) = cyx(k)

Figure 4:  Control Steps with Time and Sampled Output Values in MPC

Figure 5:  Constraints in State and Control Variable Space
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z(k )= czx(k)

The cost function calculated at time slot k will be:
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In the above equation (3), the first sum is for all values 
of i from the current time w to p, where suffix w denotes 
current time slot and p denotes the further time slot up to 
which predicted values are calculated for the variables. 
r is the reference value vector of the variables and z  is 
the output vector. The suffices Q and R are relating to 
performance index.

This first sum thus indicates that there is a cost involved 
which is due to excess or difference between the required 
r vector and the output vector z. The second sigma sum 
denotes the power cost for the control vector change ∆u. 
(R denotes the multiplying factor). The second term is 
also a squared value indicating power and is summed for 
values up to the time slot one less than Hu. 

To illustrate the calculation process over the predicted 
time instants, let us take a single variable x in the state 
space and one control variable u.

Starting at time slot 1, we proceed to find out the variable 
value at time slot 2.

 x(2)    = a x(1)  + bu(1) (4)

The A and B matrix/vector in Equation (1) has become 
constants as a and b.

From the value at slot 2, likewise we can find the value 
at slot 3.

 x(3)= a(a x(1)  + bu(1)) + bu(2) (5)

 = a.a.x1+ abu1  + bu1+b ∆u2   (6)
= a2x(1)  + a0bu1 +a1bu1 + b ∆u2   (7)

= + +
-

Âa x a bu b ui2

0

2 1

1 21( ) D (8)

Up to the value of time slot Hu-1, if we evaluate the state 
variable x, 

 x A x a bu b uHu
Hu i

Hu

Hu+

-
= + +Â1

0

1

D (9)

We predict the state variables by pre-calculation from the 

current time slot up to Hp. We apply control values of u 
from the current time slot up to Hu only, where Hu<Hp-.
Thus, we continue the calculations up to Hp  for x.

The above illustration for a single state variable can be 
extended to the general x state vector   in the following 
matrix product summed equation.
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The above vector/matrices can be denoted as    Θ, Υ and 
Ψ, so that the condensed equation is:

 X(k+1)= Ψ x(k) + Y u(k-1) +  Θ ∆u (11)

The above are the equations to calculate the future points 
and closed loop predictions of z are:
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The constrained optimisation problem to be solved is:

 V(k)= z(k+i\k)-r (k+i\k) + u(k+ i\k)
i=H

H

Q(i)
2

i=0

H -1

R(i)

P u

ˆ ˆ
É

”Â Â 22  (13)
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This is subject to the inequality with slack variables f,g,w.  
The problem is a Quadratic performance calculation with 
constraints.
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The constraints are converted to a single linear inequality 
of the form;

 
F u k f

x k Yu k
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g
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1
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-G Y =0 (15)

The solution of the eqn. (10) subject to optimisation as 
per eqn. (13) is to be made at every time step.  This is 
a rather considerable effort in computation.  Thus, the 
straightforward computation method ordinarily done 
for MPC is subject to computational load which made 
it feasible for only the slower process control systems.  
Further, when it comes to a wide range for process variables 
to be controlled, the nonlinear effects of the process are 
not included in the eqn. (10) because it considers the state 
matrices as constants.

4. Fuzzy Inference System Based Model 
Predictive Control

In this work, a direct approach to state space model using 
fuzzy logic functions is employed. In formulating the 
state space model, the usual relations are

X AX B U

Y CX

’ .= +
=

(17)

where X is the state variable vector,  Y, the process 
output vector, U the control vector and A,B  and C are 
state matrices. The fuzzy model is easily formulated for 
any nonlinear system using a Sugeno Fuzzy inference 
method, defined by fuzzy membership functions, rules 
and output equations to fit any nonlinear surface of the 
process variables’ dynamics. This is given by a fuzzy 
function f(X) in the equations below and as a figure in 
Figure 6. The control relation BU is usually linear. 

 
X f X BU

Y CX

’ ( ) .= +
=

(18)

Thus prediction equations step by step, similar to 
equations (3,4)  are :

 
X f X B U

Y CX
k k k

k k

+

+

= +
=
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1

( ) .
(19)

The calculation is based on steps applied for k time slots 
and prediction made for N slots where N>>k.   All k time 
steps are applied and after that time another estimate is 
made after noting the process values.

The steps applied can be any decreasing monotonous set 
of values commencing from a large step. The idea is that 
a large initial step helps in reaching the set value with 
least delay.

To optimise, suppose we consider the values of U in steps 
over the possible range within the constraint domain.  For 
example, if the control can be from 0 to 20 in steps of 2, 
there will be ten such values for U.  For each value, the 
objective function is calculated. Then, the minimal value 
of the objective function (Figure 7) and its corresponding 
U can be obtained. That particular U vector is now 
applied. This needs a step after step fuzzy functional 
numerical evaluation. After defining a FIS for the system, 
the surfaces are available by calculations (the “evalfis” 
function in MATLAB) made for any one step using the 
measured process values through the FIS.

5. Simple Illustration for Nonlinear 
Model Predictive Control 

With a view to elucidate the features of the NMPC for 
nonlinear optimal control, at first a single input and output 
system is taken and the method is as follows.

Figure 7 shows starting instant t=0, the calculations of 
system output y, as exponential-like waveforms. Each curve 
has a control input u which is also shown.  The control input 
is constant after 10 steps. The control value starts high and 
decreases in ten steps and further remains same. The light 
coloured curves indicate that constraints are exceeded, 
where the control value has exceeded the limit.

For each such control sequence, the cost function is also 
calculated. There are two components of the cost function. 
One of the two cost functions relate to the error between 
the desired value and the actual value.  So, the faster the 
rise to the desired value, the lesser will be cost.  Another 
is due to the control effort u   and is a square sum of the 
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control input values. If high control is applied, there is 
fast rise and so the first cost decreases, but the control 
cost increases. So, there is a minimum value of the total 
cost for a certain control step sequence, which occurs 
as the fifth one from the bottom in the above calculated 
curves. The cost function graph is shown on the right.  To 
optimise, we can consider the values of U in steps over 
the possible range within the constraint domain. The steps 
applied can be any decreasing monotonous set of values 
commencing from a large step. The idea is that a large 
initial step helps in reaching the set value with least delay. 

The minimal value of the objective function and its 
corresponding U can be obtained. That particular U vector 
is applied. 

But instead of searching for the best U  in the above 
sequential ten steps, search algorithms can quickly 
find the best step.  Here, the U is a single variable, but 
in general, U vector can have a dimension n.  For n=2, 
we have to search over an area, for n=3, over a volume 
and for n>3, over a hyper space. Thus, search algorithms 
such as the Nelder Mead Search (NM) (1965) need to be 
employed.  For this purpose, the NM search is available 
as a function command ‘fminsearch’ in MATLAB.  The 
same was modified by Box to include constraints; the 
program for such is ‘fmincon”.

There are several variations in the prediction and 
application steps existing and possible. One or more of 
these are:

1. The calculation is based on steps applied for k time slots 
and prediction made for N slots.  (N>k).  Then by optimal 
choice of control, the first control step alone is applied. 

The first time step is applied and at the end of that time 
another estimate is made, noting the process values.

2. The calculation is based on steps applied for k time slots 
and prediction made for N slots.  All k time steps are ap-
plied and after that time another estimate is made after 
noting the process values.

6. Direct Search Fuzzy State Space 
nonlinear Model Predictive control

In what follows, a method employing the Box’s 
constrained simplex search has been attempted.

1. We first determine the process variable state space formu-
lation as graphical or any other mode of representation. For 
e.g., if dx/dt = f(x), where f(x) is a nonlinear function of x.

In the state matrix A, we determine which of the terms 
aij belong to nonlinear functions, such as, for example,  
a nonlinear viscous damping in the second order (2 ¥ 2) 
A matrix. Such a nonlinear viscous spring mass damper 
system is:

 D2x + k f(Dx) + wn
2x= wn

2U (20)

which can be  represented in state space form as

 x’ = Ax+Bu
 Y = Cx
where x=[x1 x2]’ 

The values of A, B are based on a comparison with the 
linear form of the system, which is 

 D2x + 2 x wnDx +wn
2x =wn

2U (21)

Figure 7:  A Typical Set of Response Curves Calculated for Different Decreasing Monotonous Set 
(up to the Control Horizon) of U Values. The Evaluation of the Objective Performance 

Cost is on the Right, Giving What is the best Control Step
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The functional relation of the kDx term can be modeled 
by a fuzzy model relation f(Dx).

All fuzzy models in a FIS will have input and output 
values usually normalized within the range -1 to +1, and 
so the factor k takes into account the magnitude.  

We know that the linear second order equation can be 
represented in state space form as for example:

 A
n n

=
- -

È

Î
Í
Í

˘

˚
˙
˙

=
- -

Ï
Ì
Ó

¸
˝
˛

0 1

2

0 1

16 42w xw
(22)

B = [0 1]’ and C  =  [1 0]  

In a nonlinear system, the matrix 

A =
- -
0

16

1

4
 becomes partly numbers and partly a 

function as:

 Ax
f x x

x

x
=

- -
ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

Ï
Ì
Ó

0 1

16 2 2

1

2( ) / max

(23)

2. We can convert this into a fuzzy model, choosing 
Membership functions as per choice and determine the 
rules.  The following illustration shows this for a simple 
nonlinear damper for optimizing a fuzzy performance in 
fuzzy modeled state space. The f(x) which replaces the 
state equation Ax is given by a Fuzzy Inference System 
(FIS), based on a Fuzzy model. The Fuzzy model is pre-
pared as per a Mamdani or Sugeno type, using standard 

principles in fuzzy logic. The Model and its function f(x) 
may be as given below (Figure 8).

3. Next, we need a function for the optimisation. As for 
the  performance index to be met, there are choices:  a 
Quadratic Performance Index (QPI)  such as: 

i. J x Qx u RuT T= +Ú or,
 ii. J x u RuT= +F( ) , where Φ is  a nonlinear relation 

between performance index and x vector, while the 
control energy based part is kept as usual, as in (i),  
or

 iii. J x u= +F( ) ( )s  having both parts as nonlinear. Note 
that u will contain variables of control [u1 u2…uc] 
vector.

 iv. As stated in (ii), the control function part could be 
taken as a QPI, while the state variable part, which 
is due to the error in x will demand a penalty which 
might be nonlinear. To illustrate this, it is sketched 
and modeled by another fuzzy function (Figure 9).

 4. Calculate, starting at time step t0:
 i) Assume a control value to start with for u, say, u0.      

  With this u¸ we calculate:            
a) The value of dx/dt, or incremental dx with the state 

space relation
  dx/dt= A{f(x)}+Bu.         For this, one has to do 

a fuzzy evaluation each time step, where eq.(23) is 
used.

Figure 8 a:  The choice of Membership functions for the nonlinear damper

       

Figure 8 b:  The Nonlinear Damping Function Realized by a FIS
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Figure 9 a:  The penalty function has a nonlinear shape, having small values for low values of the 
variable x and increasing for large values beyond75%

Figure 9 b:  The Fuzzy Membership Functions for x and f(x), (input and output) 
Chosen to Meet the Figure9a (I)

Figure 9 c:  The Fuzzy Membership Functions for x and f(x), (input and output) 
Chosen to Meet the Figure9a (II)
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b)  Find the new x vector since xnew=x+ dx.
 c) We can calculate the function of performance index, 

multiply by dt and add up to previous   sum.
 d) Apply a small incremental step to u for say, k times, 

so that u varies by say 35% of   initial value   in  
about k steps (k=4, choice made here).

 e) Read the actual process value x at each step, use it to 
determine the dx/dt for each step. Thus repeat calcu-
lation a to d for the k steps.

 5. Now we will get a calculated performance Index 
with this control u.

 6. We have to now find a u that minimizes the perfor-
mance Index by running over the steps from (i) till a 
minimum in (5) is got.   

When it is a two variable x,   we employ the Nelder Mead 
method.  This method chooses a simplex of vertices for u; 
i.e., if we choose a triangle whose vertices are the control 
vector values. This triangle space is the space of points 
in the two u variables u1, u2. Suppose we would try a 
1:10 range for each of the two u values, we will have a 
grid of 100 points. In these hundred points, a Nelder 
Mead Search finds the point [u1_opt,u2_ opt],  the minimal 
performance index point. 

For example Figure 10 shows how the search points kept 
changing in the NM method to find the final optimal u 
vector. The steps are four for prediction period and 
evaluation time for performance was 100. Then,

 P I e f e dt k u tcontrol. ( )= + ¥Ú0

100 2 2 100D

Where f(e) is the fuzzy function which is given in the 
following curve, defined by the fuzzy model f.  Such an 
optimisation fuzzy function was given in the text (Figure 
9).

The x and y coordinates are the two u values, while the z 
axis shows the calculated Performance index.  The actual 
surface which indicates the minimum point has been 
found in Figure 10.

It might be noted that, instead of solving a huge set of 
equations (subject to optimisation and constraints) as 
given by the eqn. (10-15), the above procedure works out 
convenient for implementation.

Our method is simple to use and understand and provides 
a direct solution by sequential integration of the state 

space equations, even if they are nonlinear. Both fuzzy 
parameter functions as well as objective functions are 
handled easily. The programs work based on the models. 
In an actual plant situation, every step, the x values will be 
read from the plant.  That would take care of disturbances 
and also dead time delays.  These can also be included as 
a random disturbance to x at each step and using delayed 
values of  x  inside the program lines.  

Figure 10:  The Performance Index Calculated 
for the Values of U Vector in a 2-D Search Gives a 

Minimal Point, Which is the Optimal Control Vector

7. Fuzzy S.S., Fuzzy P.I. and Constraints 
using Box’s Method (Matlab’s Fmincon 
Function)

In the procedure for optimal MPC, there are often 
constraints on state variables which were described in 
eqn. (16) as inequalities. The Nelder Mead Search will 
not be able to handle constraints directly. As the search 
proceeds, one has to examine if the constraints are not 
violated at each step. The simplex figure which is used 
in the algorithm can stretch, shrink and move to find 
the minimal point quickly, but in between the steps, the 
constraints have to be checked.  So, it is convenient to 
employ the Box’s Complex method ( Takagi & Sugeno, 
1985), as it is known in optimisation techniques.  This 
method has provision to adjust the simplex within the 
constraint walls of the space. There is a Matlab function 
called ‘fmincon’ which provides the implementation. An 
example of a simple program based on this for the MPC 
control is included below (Table 1).

In the following programs, we include constraints on 
the state variables. For this, the Box’s modified Search 
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program given by MATLAB’s fmincon is used. Matlab’s 
Simulink version of MPC cannot be applied with these 
fuzzy variables and objective functions.

Table 1:  Program for Fuzzy modeled System with 
Fuzzy Performance Index using Box’s modification of 

the Nelder Mead Technique (Matlab 7)

% fa2D is the Dampling Factor of the 2nd order function 
as fuzzified in Figure 8.
subplot(211); subplot(212); clear all;
xinit=[0 ; 0];uinit = 1;
A=[0 1;-16 -3];x=xinit;
for step=1:50
    options=optimset([]);
    LB=[-10; -10];  UB=[12 ; 15]; aineq=[1 ; 1 ];  bineq=[10 
;10];
% the following uses the fmincon function.  The details of 
use are given in MATLAB.
% the aineq and bineq are the inequalities constraints; the 
LB and UB are lower and upper bounds.  The last 100 
denotes the number used for steps in finding performance 
index using the dd_C1 function. This function calculates 
the performance at the given set of initial values, doing 
predictive control using   4 steps and continuing up to 
100 steps for evaluating the predicated performance index 
value.
[q1 q2 q3 q4]=fmincon(‘dd_C1f’,uinit,aineq,bineq,[],[],L
B,UB,[],options,xinit,100);
tau=50;    xset=10;   q=0;     delta=uinit/10;
predstep=4;
 [k1 k2 k3 y]=dd_C1f(q1,xinit,predstep);
 xinit=k3’;      %for next mpc step
 x=k3’;u=k2;
% y(t)=x(1);y1(t)=x(2);
%  umean=mean(u(1:10));
    for t=1:predstep
z(t+(step-1)*predstep)=y(t);
w(t+(step-1)*predstep)=u;
    end
end
subplot(211);plot(z);

subplot(212);plot(w)
Func dd_c1f:
; the formulation of the function is based on the choice 
of process variable’s fuzzy equations as in Figure9. dd_
C1f.m  % the fuzzy modeled performance index based 
function for calculating the response by integrating the 
s.s. equations and finding the perf. Index figure for the 
given control value u.
function [val,u,x,yf]=dd_C1f(u,x,st)
fa2d=readfis (‘fa2d’);  %the FIS for the system
fa_PI=readfis(‘fa_PI’);  % the FIS for nonlinear Perf. 
index
xset=10;K=[1 1];
;A=[0 1; -16 -3];B=[0 1]’;A=A-B*K; % To compare with 
a linear system if required
xa=x;
h=0.01;for t=1:st    % no of steps
xe(1)=(xset-x(1))/(5*xset) ;
xe(2)=x(2)/(5*xset);
%        err(t)=xe(1); err1(t)=xe(2); 
y(t)=x(1); y1(t)=x(2);   
yf(t)=xa(1);
%  dx=h*(A*xe’+[0 u]’)  This is for a linear system
  dg=evalfis((xe),fa2d);  %This uses the Fuzzy Evaluation 
function for system
  dk=(A(2,1)*x(1) -dg(2)*u)*h;  
 dk;
 dq(1)=x(2)*h;
 dq(2)=h*(A(2,1)*x(1) +A(2,2)*x(2));
 dkk=-A(2,2)*x(2)*h;
 dxf=[dq(1) dk]+[0 -A(2,1)*u]*h;
dx=dq+[  0  u*(-A(2,1))]*h;
% dx=A*xe’*h+[0 u]’*h
x=x+dx;    %for linear
xa=x+dxf;  % For Fuzzy system
end
subplot(211)
ya=[y y1]’;
plot(y);subplot(212);plot (yf,’r’)
% er=xset-yf;s=0;for j=1:st;s=er(j)^2+s;end
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er=xset-yf;s=0;
for j=1:st;
    ers(j)=er(j)*er(j);
    s=evalfis(er(j)/xset,fa_PI)*ers(j)+s;  %Evaluates 
performance index using Fuzzy inference 
end
s=s+u*u/4;  
val=s; % This value gives the total performance index for 
this control value
u;
end

Figure11:  The Model Predictive Control Step 
Values Applied in the Bottom Curve and the 

Response of the Stem to a Step Reference Input of 10

The programs give the idea behind the procedures.  
The method can be adapted to any system, including 
interacting MIMO systems also.  

8. Conclusion

The programs elucidate the Nelder Mead Search method 
and the Box’s Complex optimisation method, as well as the 
simple iterative step by step in time evaluation procedure, 
instead of solving a huge set of equations (subject to 
optimisation and constraints) as given by the earlier 
workers. Our method is simple to use and understand 
and provides a direct solution by sequential integration 

of the state space equations, even if they are nonlinear. 
Both fuzzy parameter functions as well as objective 
functions are handled easily. The programs work based 
on the models. In an actual plant situation, every step, the 
x values will be read from the plant. That would take care 
of disturbances and also dead time delays. These can also 
be included as a random disturbance to x at each step and 
using delayed values of x inside the program lines, but 
that was not done since there is no point in doing such 
a blind simulation. Matlab’s Simulink version of MPC 
cannot be applied with these fuzzy variables and objective 
functions, because it does not support such. The programs 
give the principles behind the procedures.  The method 
can be adapted to any system, including interacting 
nonlinear MIMO systems also.
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