
Design and Development of Novel Methods for
Searching Sequences
Dr.S. Vijayarani* Ms.S.Deepa**

* Research Scholar, Department of Computer Science, Bharathiar University, Coimbatore, Tamil Nadu, India

1. Introduction

Data mining can also be described as data processing
using sophisticated data search capabilities and statistical
algorithms to discover patterns and correlations in large
pre-existing databases. From these patterns, new and
important information can be obtained that will lead to the

Article can be accessed online at http://www.publishingindia.com

discovery of new meanings which can then be translated
into enhancements in many current fields. Sequences
are an important kind of data which occur frequently in
many fields such as medical, business, financial, customer
behaviour, educations, security, and other applications
(Esmaeili & Gabor, 2010). Sequential pattern mining
is aiming at finding the frequently occurred sequences
to describe the data or predict future data or mining
periodical patterns (Agrawal & Srikant 1994, 1995). New
algorithms and techniques (Dreyer et al., 1995; Seshadri
et al., 1996) have also emerged recently to meet the new
requirements of sequence data management.

Sequential pattern mining finds interesting sequential
patterns among the large database. It finds out frequent
subsequences as patterns from a sequence database. Let X
= {i1. . . in} be a set of items, each being associated with
a possible set of attributes. The value of an attribute A
of item i is denoted by i.A. An itemset consists of a non-
empty subset of items. A sequence α = <A 1・・・An> is
an ordered list of itemsets. An itemset Ai (1 ≤ i ≤ l) in a
sequence is called a transaction.

The length of a sequence is denoted by the number of
transactions that are present in a sequence. A sequence α =
<A1 . . . An> is called a subsequence of another sequence
β = <B1 . . .Bm> (n ≤ m), and β a super-sequence of α, if
there exist integers 1 ≤ i1< . . < in ≤ m such that X1 Yi1
, . . . , Xn Yin. A sequential database is a set of 2-tuples
(sid, β), where sid is a sequence-id and β is the sequence.
A tuple (sid, β) in a sequence database is said to contain
a sequence λ if λ is a subsequence of β. The number of
tuples in a sequence database containing sequence λ
is called the support of λ, denoted by sup (λ). Given a
positive integer minimum_sup as the support threshold,
a sequence λ is considered to be a sequential pattern in
sequence database Sdb if sup (λ) ≥ minimum_sup. The

Abstract

The concept of sequence data mining aimed to retrieve
the frequent patterns in the sequences of products
purchased by the customers through the time ordered
transactions. Later, the application of sequence
mining was extended to complex applications like
telecommunication, network detection, DNA and protein
sequence research. The technique of searching among
sequence data is very important in many applications.
A search technique is a technique for finding an item
with specified properties among a collection of items.
The searching process in sequence databases plays
an important role in many application domains, mainly
for information retrieval and data mining. When there
are a number of stored objects, it will be too slow to
linearly search all the stored items to find those that
satisfy the query criteria. Hence various techniques
and data structures are required to organise and
manage the search process so that objects relevant
to the query can be located quickly. In this research
work, a new sequence search technique SSPP is
proposed for performing sequence search operation in
a retail dataset. The performance of SSPP technique
is analysed to show the efficiency of the proposed
technique when compared to other sequence search
methods.

Keywords: Sequence, Sequence Database, Prefix
Span, SSP, SSPP

30 Journal of Applied Information Science Volume 2, Issue 2, December 2014

sequential pattern mining problem is used to find the
complete set of sequential patterns with respect to a given
sequence database and a support threshold minimum_
support (Agrawal & Srikant 1994, 1995).

Searching a list for a particular item is a general task. For
performing search operations in data structures, there
exist several different algorithms. There are many search
algorithms in data structures that are used to search for a
particular data item in a large amount of data. But still new
algorithms yet to be developed to search for a particular
sequence of data items in large volumes of data.

For example, in order to perform search of a particular
item in a retail database, several algorithms such as
linear search, binary search, fibonacci search etc are
already available. These algorithms are used for finding
whether the item (single), for example, bread is present
in a particular transaction or not. But it is difficult to find
more number of items, namely bread, butter and jam
had been bought together in a particular transaction. In
retail dataset, each individual item is stored with a unique
product id. Hence the concept of integer sequence search
can be used to find the sequence relationships among the
items that were bought together. The sequential search
algorithms perform search from the first data points to the
end of the data sequence s1, s2 : : : sn.

The rest of the paper is organised as follows: Section
2 describes the related work. Section 3 describes the
problem objective and the proposed technique is explained
in Section 4. Section 5 deals with the performance
evaluation and the conclusion for the proposed technique
is given in Section 6. References are given in Section 7.

2. Related Works

Searching an item or data from a large data set is a
challenging task. Many numbers of searching algorithms
are used for performing searching process. Some of the
popular searching algorithms are Binary Search, Linear
Search, Depth First Search, Breadth First Search, Binary
Search Tree, Particle Swarm Optimisation, Genetic
algorithm, etc. The simplest method of searching of
an element is linear search. It is the simplest searching
method which checks for an item one by one linearly
(Beck, 1964; Bellman, 1963; Booch, 1995; Boyer &
Moore, 1977).

In binary search technique, the divide and conquer
strategy is used to find the search element. It divides the
entire array of items in to two parts and verifies from the
middle of the elements in the list. If the key value if less
than the middle value then it searches to the left side till 0
and this process continues till N if the key value is greater
than the middle value (Josuttis, 1999).

A number of algorithms have been proposed for
performing searching operations for a sequence of strings
in a large database. The Enhanced Checking and Skipping
Algorithm (ECSA) is produced by the enhancement of
the classical string searching algorithms by converting the
character-comparison into character-access by using the
condition type character access rather than the number-
comparison and by starting the comparison at the latest
mismatch in the previous checking which in turn increases
the probability of finding the mismatch faster if there is
any (Mhashi & Alwakeel, 2010).

The Boyer-Moore algorithm performs the search from
right to left in the pattern. The algorithm places the pattern
over the leftmost characters in the text and attempts to
match it from right to left. If there is no mismatch, then
the pattern has been found. Or else the algorithm performs
a shift, which is an amount by which the pattern is moved
to the right before a new matching attempt is undertaken
(Boyer & Moore, 1977).

In KMP algorithm, each time when a mismatch is found,
the false start consists of characters that were already
examined. This avoids the repetitive comparisons with
the known characters. The algorithm can be arranged
so that the pointer in the text is never decremented. To
accomplish this, the pattern is preprocessed to obtain
a table that gives the next position in the pattern to be
processed after a mismatch (Knuth & Pratt, 1977).

When the alphabet size is large and the length of the
pattern is small, it is not good to use Boyer-Moore’s
bad-character technique. Instead of this method, the bad-
character shift of the right-most character of the window
to compute the value of the shift is found. These values
for the shift are calculated in the preprocessing stage for
all the characters in the alphabet set. Hence, the Horspool
algorithm is more efficient in practical situations where
the alphabet size is large and the length of the pattern is
small (Horspool, 1980).

Design and Development of Novel Methods for Searching Sequences 31

3. Problem Objective

The sequential pattern mining aims to retrieve the
frequent sequences in the given sequence database based
on the user defined minimum support. From the datasets,
using several sequence pattern mining algorithms, we can
generate the sequences and these generated sequences
are stored in a sequence database. The main aim of
the proposed search technique is to perform the search
operation in the sequence database and as well to count
the occurrences of the search sequence.

In this paper, a new technique, Sequence Search by
Preprocessing (SSPP) is proposed for searching a
sequence in s sequence database. Initially, the sequences
are generated from the data set by using several sequence
generation algorithms. Important sequence generation
algorithms are Generalised Sequential Patterns (GSP),
Sequential Pattern Discovery using Equivalent classes
(SPADE), Prefix-Projected Sequential Pattern Growth
(PrefixSpan), Frequent Pattern-Projected Sequential
Pattern Mining (FreeSpan), Sequential PAttern Mining
(SPAM), Incremental Sequence Extraction (ISE), etc. In
this research work, three sequence generation algorithms,
namely GSP, SPADE, and PrefixSpan algorithms are used
for generating sequences. By measuring the efficiency of
these algorithms, the PrefixSpan algorithm performance is
better than GSP and SPADE (Vijayarani & Deepa, 2013).
The sequences generated by the Prefixspan algorithm
are stored in a sequence database. In this research work,
a new search technique is proposed to perform the
search process and to find the number of occurrences
of a particular sequence in a sequence database. The
techniques proposed for performing search operations
is Sequence Search by PreProcessing (SSPP) and its
performance is compared with another sequence search
method, that is, Sequence Search by Partitioning.

Figure 1: System Architecture for Sequence Search

Transaction

Database
Sequence

Generation

1.GSP
2.SPADE
3.PrefixSpan

PrefixSpan

Sequence Database

Sequence Search

Sequence Search
by Partitioning

Sequence Search
by PreProcessing

Performance
Evaluation

Best sequence
Search Method

3.1. Dataset

The dataset used in this paper is taken from Frequent
ItemSet Mining Repository (http://fimi.ua.ac.be/data/
retail.dat). Retail dataset is used in this research work.
It is a real time dataset collected from a Belgian Retail
Supermarket store. The dataset consists of 88,163
transactions and 16,440 different products that are sold
in various transactions carried over in a certain period of
time. The transactions consist of unique ids that are given
for each product that was provided by the store.

Table 1: Sample dataset

Transaction Sequence of Products

T1 36 37 38 39 40 41 42 43 44 45 46

T2 38 39 47 48

T3 38 39 48 49 50 51 52 53 54 55 56 57 58

T4 32 41 59 60 61 62

T5 36 37 38 39

T6 50 51 52 53

T7 52 53 54 55 56 57 58

3.2. The Prefixspan Algorithm

The PrefixSpan algorithm (Jian et al., 2004) is a well-
known pattern-growth approach. The major idea of
PrefixSpan algorithm is that any frequent subsequences can
always be found by growing frequent prefixes. It divides
database into smaller projected databases and solves them
recursively. It examines only the prefix subsequences and
projects only their corresponding postfix subsequences
into projected databases. In each projected databases,
sequential patterns are grown by exploring only local
frequent patterns. Since no candidate sequence needs to
be generated, the database need not be scanned multiple
times. Since Prefix-projection substantially reduces the
size of projected databases, it leads to efficient mining of
sequential patterns. The PrefixSpan algorithm is applied to
generate the sequential patterns from the retail database.

The PrefixSpan Algorithm

PrefixSpan(α, i, S| α)

Begin

32 Journal of Applied Information Science Volume 2, Issue 2, December 2014

1. Scan S|α once, find the set of frequent items b such
that

∑ b can be assembled to the last element of α to form a
sequential pattern; or

∑ can be appended to α to form a sequential
pattern.

2. For each frequent item b, appended it to α to form a
sequential pattern α’ and the output α’;

3. For each α’, construct α’-projected database S| α’ and
call PrefixSpan(α’, i+1,S| α’).

End

Table 2: Sample sequences produced from Retail
dataset by PrefixSpan algorithm

S. No SEQUENCES PRODUCED

1 38

2 39
3 53
4 38, 39
5 38, 53
6 39, 53
7 38, 39, 53

3. Search Techniques

3.1. Sequence Search by Partitioning

This method consists of two steps namely partitioning
and searching. In partitioning, the sequence database Sdb
is partitioned into different tables as T1, T2 ….Tn based on
the length of the sequences. For example, the sequence
length is one, two, three, etc. Sequences with one item are
stored in table T1 and the sequences with two items are
stored in another table T2 and so on. In order to perform
search process, the input search sequence Ss is required.
Next, the input search sequence length (L) is calculated.
Based on the search sequence length (L), the search starts
from the table TL and continues up to the table Tn. The
search Sequences Ss are retrieved and the count value is
calculated.

The SSP Algorithm:

Input: Sequence database Sdb, Search sequence Ss.

Output: (i) Search successful or unsuccessful (ii) Count.

Method:
 1. Consider the input sequence database, Sdb=<s1,s2…..

sn>, sj Î I, where j=1 to n be the set of sequences and
I=<i1,i2….im> where i=1 to m be the set of items.

 2. Initialize Count=0 and L=0.
 3. Partitioning:
 3.1 Partition Sdb into T tables based on the sequence

length.
 3.2 Consider the search sequence Ss and calculate its

length (L).
 4. Searching:
 4.1 Start search from TL to Tn.

4.2 If (Ss Î TL) then display the search sequence Ss;
 Increment the value of count and L;
 4.3 If (L>n) Then display the value of count;
 Else Goto step 4.2;
 4.4 Else Increment the value of L and Goto step 4.2;
 End

3.2. Sequence Search by Pre Processing

This method, too, involves two steps namely preprocessing
and searching. In preprocessing, all the combinations
of the items c1,c2…cq in sequence database Sdb are
produced and their count of occurrence in sequence
database is calculated and stored in a combinations table
C. To perform searching, an input search sequence Ss is
given. The search directly goes to the combinations table
C where the entire set of combinations of items is stored
and the particular search sequence Ss is checked in C.
If the search sequence Ss is present, their count that is
already stored in the combinations table C is retrieved and
if the sequence Ss is not present, the sequence not present
message will be displayed.

This method involves initial finding of combinations
of items and their count of occurrence in the database.
Since the combinations and their count are found out in
advance, during the search sequence, the search directly
goes to combinations table and the search sequence and
the count can be easily retrieved.

The SSPP Algorithm:

Input: Sequence database Sdb, Search sequence Ss.

Design and Development of Novel Methods for Searching Sequences 33

Output: i) Search successful or unsuccessful ii) Count.

Method:
 1. Consider the input sequence database, Sdb=<s1,s2…..

sn>, si Î I, where I=<i1,i2….im> be the set of items
 2. Preprocessing:
 2.1 Split Sdb into individual items as J=j1, j2,…..jp

where J Î I.
 2.2 Generate all the possible combinations of each

individual item in J and store them in the combi-
nations table C and count their occurrences.

 3. Searching:
 3.1 Consider the input search sequence Ss.
 3.2 If (Ss Î C) then display the sequences and their

Count;
 Else
 Process Terminated.

4. Performance Evaluati on

The concept of effi ciency (or complexity) is important
when comparing algorithms. For performing the task
of searching in large amount of data, the choice among
alternative algorithms becomes important because they
may differ in effi ciency. One way to compare algorithms
is to compare the performance of the algorithms in terms
of how quickly they solve the problem. Another way of
comparing algorithms is to look at the amount of space
(memory) they require to perform the search operation.

To test the proposed method, a series of performance
studies were conducted. A performance test is focused
on the memory used and in addition, the execution time
of the two methods is also analysed. The evaluation was
performed on PC Intel Pentium processor, 2GB RAM, OS
Windows 7 Ultimate 32-bit. The subsequent tests compare
performance of two different search techniques on retail
dataset. The performance of these two search techniques
are analyzed under various criteria such as various dataset
sizes and various search sequences length. The different
sizes of dataset used in this work are 250, 1000 and 2000.
The different search sequence lengths are 2, 6 and 10.

The results for the search sequence (38, 39) and its
occurrence count are shown in Table 3.

Table 3: Sample output for search sequence

Search Sequence Output Count

38, 39
[38, 39]
[38, 39, 53]

2

Table 4: Total Execution Time of SSP, SSI and SSPP
techniques for datasets of various sizes

Algorithm Dataset size Total Execution Time(in ms)

SSP
250 32.0
1000 35.2
2000 35.9

SSPP
250 91.2
1000 92.3
2000 92.9

Figure 2: Total Execution Time of SSP and SSPP
techniques for datasets of various sizes

The graph shown in Figure 2 depicts the total execution
time taken for searching the sequences by SSP and SSPP
techniques. From the results, we observed that the SSP
technique takes minimum execution time than SSPP
technique.

Table 5: Search Time of SSP and SSPP techniques
for datasets of various sizes

Algorithm Dataset size Search Time (in ms)

SSP
250 16.0
1000 17.3
2000 17.8

SSPP
250 11.3
1000 11.7
2000 11.9

34 Journal of Applied Information Science Volume 2, Issue 2, December 2014

Figure 3: Search Time of SSP and SSPP techniques
for datasets of various sizes

The graph shown in Figure 3 shows search time of two
search techniques. The result shows that the search time
of SSPP require minimum search time than SSP.

Table 6: Total Memory Space of SSP and SSPP
techniques for datasets of various sizes

Algorithm Dataset size Total Memory (in kb)

SSP
250 184.0

1000 190.0
2000 190.8

SSPP
250 651.2

1000 654.4
2000 656.0

Figure 4: Total Memory Space of SSP and SSPP
techniques for datasets of various sizes

The graph in Figure 4 shows the total memory space
utilised for searching the sequences by SSP and SSPP
techniques. From the results, we observed that the SSP
technique occupies minimum memory space than SSPP
technique.

Table 7: Total Execution Time of SSP and SSPP
methods for search sequences of various lengths

Algorithm Sequence Length Total Execution Time(in ms)

SSP
2 32.0
6 106.8
10 170.0

SSPP
2 91.2
6 273.6
10 440.0

Figure 5: Total Execution Time of SSP and SSPP
methods for search sequences of various lengths

The graph in Figure 5 shows total execution time for
searching the sequences by SSP and SSPP techniques.
The results showed that the SSP occupies minimum
execution time.

Table 8: Search Time of SSP and SSPP techniques
for search sequences of various lengths

Algorithm Sequence Length SearchTime (in ms)

SSP
2 16.0
6 53.4
10 85.0

SSPP
2 11.4
6 34.9
10 55.0

The graph shown in Figure 6 shows the search time for
searching the sequences by SSP and SSPP techniques.
The results show that the SSPP occupies minimum search
time than SSP.

Design and Development of Novel Methods for Searching Sequences 35

Figure 6: Search Time of SSP and SSPP techniques
for search sequences of various lengths

Table 9: Total Memory Space of SSP and SSPP
techniques for search sequences of various lengths

Algorithm Sequence Length Total Memory (in kb)

SSP
2 182.0
6 567.6
10 928.0

SSPP
2 651.2
6 1934.4
10 3280.0

Figure 7: Total memory space of SSP and SSPP
techniques for search sequences of various lengths

The graph in Figure 7 shows the total memory space
utilised for searching the sequences by SSP and SSPP
techniques. From the results, we observed that the SSP
technique occupies minimum memory space than SSPP
technique.

5. Conclusion

Nowadays many applications involve the management
of sequence data. However, traditional relational
database techniques are insuffi cient in handling queries
on sequence databases. Therefore sequence data
searching algorithms are in demand. Advanced searching
algorithms are likely to be useful in practical applications
and they present a number of interesting problems in the
analysis of algorithms. There are a number of algorithms
for searching a single integer value or for searching a
sequence of strings. This research work analyzed the
concept of searching a sequence of integers and a new
search technique SSPP is proposed for performing search
process for a sequence of integers on retail dataset. By
analysing the experimental results, we come to know
that the SSP technique needs minimum execution time
and SSPP require minimum search time for searching the
sequence. In terms of memory utilisation, SSP occupies
less amount of memory when compared with SSPP
technique.

References

Agrawal, R., & Srikant R., (1994). Fast Algorithms for Mining
Association Rules. 20

th
International Conference on Very

Large Data Bases (pp. 487-499).
Agrawal R., & Srikant, R., (1995). Mining Sequential Patterns.

11th International Conference on Data Engineering. IEEE
Computer Society Press, Taiwan (pp. 3-14).

Beck, A.(1964). On the linear search problem. Israel Journal of
Mathematics, 2(4), 221-228.

Bellman, R. (1963). An optimal search problem, SIAM Review,
6, 2, 168-174.

Booch, G. (1995). Object Oriented Analysis and Design (2nded),
Addison-Wesley.

Boyer, R. S. & Moore, J. S. (1977). The Boyer-Moore Algorithm.
Collins, W. J. (1992). Data Structures. fi rst Edition Addison-

Wesley publishing company, page 397, U.S.A
Knuth, D. & Pratt, V. (1977). Knuth-Morris-Pratt Algorithm.

SIAM Journal on Computing, 6(1), 323-350.
Dreyer., W, Dittrich., A. K., & Schmidt., D. (1995). Using

the CALANDA Time Series Management Systems. In
Proceedings of the ACM SIGMOD Conference on
Management of Data (pp. 489).

Horspool, R. N. (1980). Practical fast searching in strings.
Software- Practice Experience, 10(6), 501-506.

36 Journal of Applied Information Science Volume 2, Issue 2, December 2014

Jian, P., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen,
Q., Dayal, U., & Hsu, M. C. (2004). Mining Sequential
Patterns by Pattern-Growth: The Prefix-Span Approach.
IEEE Transactions on Knowledge and Data Engineering,
16(10).

Josuttis, N. M. (1999). The C++ standard library: A tutorial
and reference. Addison-Wesley, Reading.

Esmaeili, M., & Gabor, F. (2010). Finding sequential pat-
terns from large sequence data. International Journal of
Computer Science Issues, 7(1), 1694-0814.

Mhashi, M. M., & Alwakeel, M. (2010). New enhanced ex-
act string searching algorithm. International Journal of
Computer Science and Network Security, 10(4), 13-20.

Seshadri, P, Livny, M. & Ramakrishnan, R. (1996). The Design
and Implementation of A Sequence Database System. In
Proceedings of 22nd VLDB Conference (pp. 99-110).

Yun, U. (2007). Analyzing Sequential Patterns in Retail
Databases. Journal of Computer Science and Technology,
22(2), 287-296.

Vijayarani, S., & Deepa, S. (2013). An Efficient algorithm
for sequence generation in Data mining. International
Journal of Cybernetics and Informatics. 3(1), 21-30.

Li, Y., Lauria, M., & Bundschuh, R. (2004). Using Hybrid
Alignment for Iterative Sequence Database Searches.
Currency and Computation: Practice and Experience.

Zabinsky, Z. B., & Smith, R. L. (1990). An adaptive Random
search algorithm with linear complexity in dimension.
Technical Report 90-15.

