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INTRODUCTION 

Over the past few decades, the autoregressive conditional 
heteroscedasticity (ARCH) models have become the most 
popular models of conditional variance of financial time 
series. The ARCH framework was firstly proposed by Engle 
(1982) and was further extended to the GARCH model 
(Bollerslev, 1986), EGARCH (Nelson, 1991), GJR-GARCH 
(Glosten et al., 1993), APARCH (Ding et al., 1993), and 
many other models popularly known as GARCH family 
models. The popularity of GARCH models is particularly 
due to their ability to capture characteristics of financial 
time series such as volatility clustering, fat tail behavior, 
long memory, mean reversion behavior, time varying 
heteroscedasticity, and leverage effect. Because of high 
dynamic nature of financial time series data, researchers 
are continuously adding more and more models to existing 
GARCH family models. Return innovation distribution 
plays an important role in estimation process of GARCH 
family models. While estimating GARCH models, research 
applies different innovation distributions depending on the 
frequency of data, time horizon, and type of estimation 
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Abstract  This paper offers empirical evidence to extant literature on choice of return innovation distribution in GARCH family models. 
Statistical software packages have Gaussian distribution as default option and offer other distribution options to choose as per properties 
of data series. Most common choices are Gaussian, t-distribution, and GED. The choice of appropriate return innovation distribution for 
best-fit GARCH model is still an open inquiry. We posit that choice of return innovation distribution is influenced by frequency of data, 
time horizon, and symmetric or asymmetric models. This paper estimates four symmetric and asymmetric GARCH models with three return 
innovation distributions using high frequency and long horizon stock market return series. Daily log returns of NIFTY50 index over the 
period January 1, 1996, to December 31, 2019, a total of 5,971 observations are analyzed. Results suggest significant evidence in support 
of volatility clustering,  fat-tailedness, mean reversion, volatility persistence,  leverage effect, and  long memory  in return series. Results 
recommend student’s t-distribution as ideal return innovation process for both symmetric and asymmetric GARCH models. The basic models 
have serial correlations, but no remaining GARCH effects. After multiple trials, it is observed that the ARMA (1,1)-GARCH (1,1) models 
have better log likelihood values, minimum information criterion values, no serial correlations, and no remaining GARCH effects. Finally, 
among the three asymmetric models, ARMA-EGARCH model has superior information criterion values. We recommend ARMA-GARCH 
(1,1) as best-fit symmetric model and ARMA-EGARCH (1,1) as best-fit asymmetric model for high-frequency data spread over long horizon.
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model. Statistical software packages have Gaussian 
distribution as a default option and offer other distribution 
options to choose as per properties of data series. Most 
common choices are Gaussian, t-distribution, and GED. 
The choice of appropriate return innovation distribution for 
best-fit GARCH models is still an open inquiry. This paper 
offers empirical evidence to extant literature on choice of 
return innovation distribution in GARCH family models. 
This paper estimates symmetric and asymmetric GARCH 
models with three return innovation distributions using high 
frequency and long horizon stock market daily return series 
and suggests appropriate return innovation distribution for 
best-fit GARCH symmetric and asymmetric models.

The structure of this paper is as follows. Section 2 discusses 
extant literature. Section 3 explains data and methodology. 
Section 4 presents estimation results. Finally, Section 5 
draws conclusions from empirical tests.

LITERATURE REVIEW

Different return innovation distributions are applied by 
researchers to model financial assets returns volatility. 
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Gaussian distribution is used to measure volatility in 
symmetric and asymmetric GARCH models to measure 
various characteristics of financial asset returns (Dedi & 
Yavas, 2017; Ghangare, 2016; John & Amudha, 2019; 
Rizwan et al., 2018; Sharma and Vipul, 2016). On the other 
side, student’s t-distribution is used to model volatility of 
stock markets and to model leverage effect and forecasting 
ability of GARCH models (Aziz & Iqbal, 2016; Olbrys & 
Majewska, 2017; and Roni Bhowmik et al., 2017). In other 
context, GED distribution is used with symmetric and 
asymmetric GARCH models (Vasudevan & Vetrivel, 2016). 
In extant literature, there are only few studies that compared 
volatility estimates resulted from two different distributions. 
For example, Marie-Eliette and Bing (2018) compared 
results from Gaussian distribution and t-distribution and 
reported that t-distribution is appropriate for higher Kurtosis 
GARCH models. Some papers applied three different 
distributions to model stock market volatility. Sasikanta 
Tripathy and Abdul Rahman (2013) reported t-distribution 
as appropriate to model stock market returns volatility. 
Similarly, Hemanth and Basavaraj (2016) applied three 
distributions and reported that GARCH (1,1) model with 
GED distribution outperformed all other models.

Notwithstanding many distinctions, the use of Gaussian 
distribution in GARCH models is most common (Hansen 
& Lunde, 2006). However, substantial evidence suggests 
that financial time series is rarely Gaussian but typically 
leptokurtic and exhibits heavy-tail behavior. Theoretically, 
GARCH model can accommodate for fat-tail through its 
specification (Bollerslev & Wooldridge, 1992). In practice, 
however, there is still excess kurtosis left in the standardized 
residuals in most cases. To solve this problem, a common 
solution is to employ a fat-tailed distribution such as the 
student’s t-distribution or Generalized Error Distribution 
(GED) (Chkili, Aloui & Nguyen, 2012). In this context, we 
posit that choice of return innovation distribution depends 
on frequency of data, time horizon, and volatility model. 

DATA AND METHODOLOGY

The data we analyze in this paper is the National Stock 
Exchange (NSE), India’s broad market index, - NIFTY50 
(Hereafter, NIFTY) daily closing price index returns. In 
year 1996, the NSE introduced NIFTY as a broad market 
index and currently it is computed based on free-float 
methodology. NIFTY contains most active and highly liquid 
50 stocks listed in NSE and represents about 66.8% of the 
free-float market capitalization of the stocks listed on NSE. 
NIFTY is used for different purposes such as benchmarking 
fund portfolios, index-based derivatives, and index funds. 
The data is from www.nseindia.com. Over the study period, 
there are altogether 5,971 daily observations from Jan. 1, 

1996, to Dec. 31, 2019. During this period, NIFTY moved 
from meager 913.11 points to 12247.10 points. We calculate 
absolute return [rt = 100*(Pt - Pt-1)/Pt-1], continuously 
compounding return or log return [rt = 100* ln (Pt /Pt-1)], and 
squared return (r2

t), where, Pt is closing value of the index 
at time t. 

Symmetric and Asymmetric Models

GARCH Model (Bollerslev, 1986)
                      σ2

t = α0+ α1ε
2

t−1 + β1σ
2
t−1 (1)

The standard GARCH model assumes that positive and 
negative error terms have symmetric effect on the volatility. 
This is because in the GARCH model only squared residuals 
ε2

t−1 enter the conditional variance equation, the signs of the 
residuals or shocks have no effect on conditional volatility. 
So, GARCH is unable to express the leverage effect. The 
drawbacks of the GARCH model are that it cannot explain 
the negative correlation between the fluctuations in stock 
returns. It assumes that the conditional variance is a function 
of lagged squared residuals. So, the symbol does not affect 
the residual volatility, that is, positive and negative changes 
are symmetric to conditional variance. Next, GARCH model 
assumes all coefficients are greater than zero, which also 
makes the model hard to apply. 

In order to measure return volatility, symmetric basic 
GARCH model was extended. Among the many asymmetric 
models, we choose conventional asymmetric models to 
model asymmetric properties of returns volatility. In this 
paper, we apply three asymmetric GARCH models, that 
is, the EGARCH model, the GJR-GARCH model, and the 
APARCH models. 

Exponential GARCH (EGARCH) Model (Nelson, 1991)
 log (σ2

t) = α0 + α1εt−1 + λ1 (|εt−1|−E| εt−1|) + β1 log (σ2
t−1)       

  (2)

GJR-GARCH Model (Glosten, Jaganathan and Runkle, 
1993)
 σ2

t = α0 + α1ε
2
t−1 + λ1 dt-1ε

2
t−1 + β1σ

2
t−1 (3)

APARCH model (Ding et al., 1993)
                 σδ

t = α0 + α1 (|εt−1| − λεt−1)
δ + β1σ

δ
t−1 (4)

where, parameter δ (δ < 0) plays the role of a Box–Cox 
transformation of the conditional standard deviation σt, 
while λ reflects the leverage effect.

Different return innovation distributions are used in GARCH 
models. Most common and conventional return innovation 
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distributions are Gaussian, t-distribution, and GED. The 
application of simple Gaussian distribution is most common. 
However, due to fat-tail behavior in financial asset return 
series, other return innovation distributions are considered. 
The t-distribution density curves are symmetric and bell-
shaped such as the normal distribution and have their peak 
at 0. However, the spread is more than that of the standard 
normal distribution. The degrees of freedom is larger, the 
t-density is closer to normal density. Next, Nelson (1991) 
proposed to use the GED to capture the fat tails usually 
observed in the distribution of financial time series. The v 
(degrees of freedom) is a positive parameter governing the 
thickness of the tail behavior of the distribution. When v = 
2 the probability density distribution (pdf) reduces to the 
standard normal pdf; when v < 2, the density has thicker 
tails than the normal density; when v > 2, the density has 
thinner tails than the normal density. When the tail thickness 
parameter v = 1, the pdf of GED reduces to the pdf of double 
exponential distribution. 

RESULTS
In this section, we present results of this paper. First we 
describe few stylized facts of data series through plots. 
We then present preliminary analysis. Finally, we discuss 
results of symmetric and asymmetric GARCH models under 
different return innovation distributions. Fig. 1 plots the 
daily close prices, daily relative returns, daily log returns, 
and squared returns of NIFTY index. It also plots auto 
correlation function (ACF) and partial auto correlation 
function (PACF) plots of relative returns, log returns, and 
squared returns. There is no clear visible pattern of behavior 

in the relative returns and log returns series. In close price 
plot, we can see the movement as an upward trend, which 
shows the volatility clustering – low values of volatility 
followed by low values and high values of volatility 
followed by high values. This behavior is confirmed in ACF 
plots of relative and log returns series. The log returns show 
no evidence of serial correlation, but the squared returns 
are positively auto correlated. Also, the decay rates of the 
sample auto correlations of squared returns appear much 
slower, suggesting possible long memory behavior.  

Table 1 gives some standard summary statistics along with 
results of unit root tests for stationarity and Jarque-Bera test for 
normality. The highest single day log return is 16.33 percent 
and lowest is -13.05 percent. The average daily log return is 
close to zero that is 0.04 percent with a standard deviation 
of 1.48. The distribution of daily log return series is clearly 
non-normal with negative Skewness (-0.16) and pronounced 
excess kurtosis (10.83). The excess kurtosis value shows 
the daily log return series have the fat-tail characteristic. 
The Jarque–Bera for the log return series is 15,280.83 and 
statistically significant at one percent level. The higher Jarque–
Bera statistics indicates the non-normality of the return series. 
The Augmented Dickey Fuller test (ADF) and Dickey Fuller 
Generalized Least Squares (DF-GLS) test results indicate that 
the log return series is stationary at level. With Ljung-Box 
Q-statistics, we check for serial correlations in return series at 
5, 10, and 20 lags representing a week, fortnight, and monthly 
trading days, respectively. The Q-statistics for all the three 
lags is statistically significant indicating serial correlations. 
This result suggests GARCH models are appropriate to model 
conditional variance of log return series. 

 
<FIGURE HEAD>Fig. 1: Time series, ACF, and PACF plots of Absolute Value, Relative Return, Log Return, and 

Squared Return 
 
<TABLE HEAD>Table 1: Summary statistics of daily close price, relative return, log return, and squared return 
Descriptive Daily Close Relative Return Log Return Squared Return 
Minimum 788.15 -12.23774 -13.05386 0.00 
Maximum 12271.8 17.74407 16.33432 266.8098 
Mean 4441.296 0.0544938 0.0434659 2.205982 
Std. Dev 3298.882 1.484572 1.484743 6.905526 
Skewness 0.6407455 0.0575066 -0.1645892 17.15456 
Kurtosis 2.242334 11.30887 10.83019 501.8806 
JB (p-value) 551.39 (0.00) 17179.19 (0.00) 15280.83 (0.00) 62212599 (0.00) 
Q (5) (Chi- Prob) 

 
30.55 (0.00) 31.51 (0.00) 746.53 (0.00) 

Q (10) (Chi- Prob) 
 

61.27 (0.00) 62.12 (0.00) 1127.43 (0.00) 
Q (20) (Chi- Prob) 

 
96.91 (0.00) 97.08 (0.00) 1563.01 (0.00) 

ADF 
 

-72.63 (0.00) -72.48 (0.00) -62.12 (0.00) 
DF-GLS 

 
-48.92 (0.00) -48.67 (0.00) -41.43 (0.00) 

Observations 5,971 5,971 5,971 5,971 
We first estimate basic symmetric model (GARCH 1,1) and asymmetric model (EGARCH (1,1), 
GJR-GARCH (1,1) and APARCH (1,1)) with different return innovation distributions (Gaussian, 
t, and GED) and check model efficiency with two information criterions (AIC and BIC) and log 
likelihood value. Furthermore, using Ljung-Box Q-statistics for 5, 10, and 20 lags, we diagnose 
standardized residuals and squared standardized residuals for no remaining serial correlations 
and no remaining GARCH effects. When we analyze basic models with diagnostic test results, 
we notice remaining serial correlations in standardized residuals of log returns. In this context, 
we experiment with multiple models such as GARCH-M, AR (1), MA (1), and ARMA (1,1) and 
few other specifications of GARCH (p,  q). Finally, we find that ARMA (1,1)–GARCH (1,1) 
models are of white noise process with no remaining serial correlations and no remaining 

Fig. 1: Time Series, ACF, and PACF Plots of Absolute Value, Relative Return, Log Return, and Squared Return
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Table 1: Summary Statistics of Daily Close Price, Relative Return, Log Return, and Squared Return

Descriptive Daily Close Relative Return Log Return Squared Return
Minimum 788.15 -12.23774 -13.05386 0.00
Maximum 12271.8 17.74407 16.33432 266.8098
Mean 4441.296 0.0544938 0.0434659 2.205982
Std. Dev 3298.882 1.484572 1.484743 6.905526
Skewness 0.6407455 0.0575066 -0.1645892 17.15456
Kurtosis 2.242334 11.30887 10.83019 501.8806
JB (p-value) 551.39 (0.00) 17179.19 (0.00) 15280.83 (0.00) 62212599 (0.00)
Q (5) (Chi- Prob) 30.55 (0.00) 31.51 (0.00) 746.53 (0.00)
Q (10) (Chi- Prob) 61.27 (0.00) 62.12 (0.00) 1127.43 (0.00)
Q (20) (Chi- Prob) 96.91 (0.00) 97.08 (0.00) 1563.01 (0.00)
ADF -72.63 (0.00) -72.48 (0.00) -62.12 (0.00)
DF-GLS -48.92 (0.00) -48.67 (0.00) -41.43 (0.00)
Observations 5,971 5,971 5,971 5,971

We first estimate basic symmetric model (GARCH 1,1) and 
asymmetric model (EGARCH (1,1), GJR-GARCH (1,1) and 
APARCH (1,1)) with different return innovation distributions 
(Gaussian, t, and GED) and check model efficiency with two 
information criterions (AIC and BIC) and log likelihood 
value. Furthermore, using Ljung-Box Q-statistics for 5, 10, 
and 20 lags, we diagnose standardized residuals and squared 
standardized residuals for no remaining serial correlations 
and no remaining GARCH effects. When we analyze basic 
models with diagnostic test results, we notice remaining 
serial correlations in standardized residuals of log returns. 
In this context, we experiment with multiple models such as 
GARCH-M, AR (1), MA (1), and ARMA (1,1) and few other 
specifications of GARCH (p, q). Finally, we find that ARMA 
(1,1)–GARCH (1,1) models are of white noise process with 
no remaining serial correlations and no remaining GARCH 
effects. We present results of model specifications in two 
tables. Table 2 presents estimated parameters of basic models 
and Table 3 presents estimated parameters of enhanced 
ARMA (1,1)-GARCH (1,1) models. 

Model Estimation Results

We first check whether estimated parameters of the models 
meet their specifications and assumptions. The GARCH, 
GJR-GARCH, and APARCH models assume that α0 > 0, α1 
≥ 0, β1≥ 0 and (α1 + β1) < 1. However, the EGARCH model 
uses logged conditional variance to relax the positiveness 
constraint of model coefficients. Results present in Tables 
2 and 3 clearly evince that model coefficients for all 
the models are in accordance with assumptions and are 
statistically significant at one percent significance level. We 
then look at log likelihood values and information criterion 

values of each model under three different return innovation 
distributions. Models with student’s t-distribution have 
larger log likelihood and minimum Akaike Information 
Criterion (AIC) and Bayes Information Criterion (BIC) than 
other two return innovation distributions. This specifies that 
the models under t-distribution are better fitted. 

To understand volatility clustering, we look at β1 and find that 
in all models this coefficient is close to 0.9. Given the value 
of high β1, it is obvious that large values of previous day’s 
conditional variance will be followed by large values of σ2

t, 
and small values of σ2

t-1 will be followed by small values of 
σ2

t. This indicates that the daily log return series of NIFTY 
has well known behavior of volatility clustering. In addition, 
NIFTY daily log return series also exhibits fat-tailed behavior, 
which is depicted in the shape of the distribution. By applying 
the estimated parameters in GARCH model, we can estimate 
the unconditional variance of εt as α0 / (1- α1- β1). The 
estimated unconditional variance in our basic GARCH model 
is 0.0831 / (1 – 0.0941 – 0.8984) = 11.08 and unconditional 
volatility is 3.33. And the estimated unconditional variance in 
our ARMA-GARCH model is 0.0822 / (1 – 0.0959 – 0.8963) 
= 10.54 and unconditional volatility is 3.24. We see volatility 
clustering, fat-tailed behavior, and excessive volatility from 
time to time in NIFTY returns. However, the excessive 
volatility will eventually settle down to a long-run level. This 
process is defined as mean reversion behavior. With the help 
of GARCH parameters, we measure the magnitude of mean 
reversion. The magnitude of α1+ β1 controls the speed of mean 
reversion. The half-life of volatility shocks, defined as ln (0.5) 
/ ln(α1+ β1), measures the average time it takes for | ε2 – σ2| 
to decrease by one half. The closer α1+ β1 is to one the longer 
is the half-life of a volatility shock. For our basic GARCH 
model, the half-life of volatility is -0.6931 / -0.0075 = 92 days. 
The half-life volatility in ARMA-GARCH model is 88 days. 
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Table 2: Parameter Estimates of Symmetric and Asymmetric GARCH (1,1) Models

Parameter GARCH GJR-GARCH

 N t GED N t GED

α0 0.0814*** 0.0831*** 0.0842*** 0.0577*** 0.0671*** 0.0688***

(0.0134) (0.0134) (0.0130) (0.0139) (0.0134) (0.0131)

α1 0.1050*** 0.0941*** 0.0968*** 0.1505*** 0.1507*** 0.1488***

(0.0050) (0.0082) (0.0079) (0.0074) (0.0125) (0.0117)

β1 0.8907*** 0.8984*** 0.8967*** 0.8867*** 0.8888*** 0.8888***

(0.0047) (0.0080) (0.0076) (0.0050) (0.0083) (0.0080)

Λ - - - -0.0882*** -0.1016*** -0.0953***

(0.0078) (0.0132) (0.0124)

Ν - 6.87 1.38 - 7.02 1.39

(0.5107) (0.0265) (0.5199) (0.0260)

Log(L) -9893.45 -9739.23 -9764.59 -9860.85 -9707.25 -9736.60

Diagnostic Checking

Standardized Residuals

Q (5) p value in parentheses 57.36 (0.00) 56.59 (0.00) 56.84 (0.00) 57.48 (0.00) 56.25 (0.00) 56.45 (0.00)

Q (10) p value in parentheses 75.72 (0.00) 75.18 (0.00) 75.33 (0.00) 76.68 (0.00) 76.00 (0.00) 75.94 (0.00)

Q (20) p value in parentheses 87.75 (0.00) 87.25 (0.00) 87.36 (0.00) 88.59 (0.00) 88.08 (0.00) 87.96 (0.00)

Sqrd Standardized Residuals

Q (5) p value in parentheses 3.035(0.65) 6.42(0.27) 5.42 (0.37) 0.92 (0.97) 1.35 (0.93) 1.33 (0.95)

Q (10) p value in parentheses 7.95 (0.63) 10.36 (0.41) 9.57 (0.48) 5.56 (0.85) 5.82 (0.83) 5.61 (0.85)

Q (20) p value in parentheses 20.90 (0.40) 22.05 (0.34) 21.64 (0.36) 17.88 (0.59) 17.35 (0.63) 17.40 (0.63)

Information Criteria

AIC 19794.89 (df 4) 19488.46 (df 5) 19539.17 (df 5) 19731.70 (df 5) 19426.49 (df 6) 19485.20 (df 6)

BIC 19821.67 (df 4) 19521.93 (df 5) 19572.64 (df 5) 19765.17 (df 5) 19466.66 (df 6) 19525.37 (df 6)

OBS 5,971 5,971 5,971 5,971 5,971 5,971

 
Parameter EGARCH APARCH

 N t GED N t GED
α0 0.0509*** 0.0629*** 0.0644*** 0.0544*** 0.0645*** 0.0663***

(0.0135) (0.0133) (0.0130) (0.014) (0.0134) (0.0131)
α1 0.2062*** 0.1957*** 0.1991*** 0.1096*** 0.1041*** 0.1055***

(0.0078) (0.0145) (0.0135) (0.0048) (0.0091) (0.0082)
β1 0.9802*** 0.9792*** 0.9798*** 0.8950*** 0.8975*** 0.8969***

(0.0018) (0.0033) (0.0031) (0.0046) (0.0079) (0.0074)
λ -0.0678*** -0.0746*** -0.0716*** -0.2797*** -0.3514*** -0.3222***

(0.0049) (0.0083) (0.0079) (0.0270) (0.0484) (0.0452)
ν - 7.05 1.4 - 7.02 1.39

(0.5201) (0.0259) (0.5194) (0.0261)
δ 1.4418*** 1.3215*** 1.3674***

(0.0705) (0.1406) (0.1228)
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Log(L) -9851.79 -9697.77 -9728.11 -9852.67 -9699.27 -9729.45
Diagnostic Checking
Standardized Residuals
Q (5) p value in parentheses 55.93 (0.00) 54.50 (0.00) 54.67 (0.00) 56.75 (0.00) 55.21 (0.00) 55.49 (0.00)
Q (10) p value in parentheses 75.35 (0.00) 74.22 (0.00) 74.24 (0.00) 76.05 (0.00) 74.97 (0.00) 75.02 (0.00)
Q (20) p value in parentheses 88.85 (0.00) 87.92 (0.00) 87.89 (0.00) 88.63 (0.00) 87.99 (0.00) 87.89 (0.00)
Sqrd Standardized Residuals
Q (5) p value in parentheses 3.43 (0.63) 5.14 (0.40) 4.53 (0.48) 2.04 (0.84) 4.26 (0.51) 3.35 (0.64)
Q (10) p value in parentheses 8.65 (0.56) 10.91 (0.36) 10.02 (0.44) 6.82 (0.74) 9.66 (0.47) 8.40 (0.59)
Q (20) p value in parentheses 33.01 (0.03) 34.93 (0.02) 34.33 (0.02) 24.73 (0.21) 29.24 (0.08) 27.27 (0.13)
Information Criteria

AIC
19713.57 

(df 5) 19407.54 (df 6) 19468.22 (df 6) 19717.35 (df 6) 19412.55 (df 7)
19472.90 

(df 7)

BIC
19747.05 

(df 5) 19447.71 (df 6) 19508.38 (df 6) 19757.52 (df 6) 19459.41 (df 7)
19519.76 

(df 7)
OBS 5,971 5,971 5,971 5,971 5,971 5,971

Table 3: Parameter Estimates of Symmetric and Asymmetric ARMA-GARCH (1,1) Models

Parameter ARMA-GARCH ARMA-GJR-GARCH
 N t GED N t GED

ar1 -.1475 -0.2263 -0.1475 -0.0989 -0.1939 -0.1008
(0.1525) (0.1513) (0.1622) (0.1431) (0.1440) (0.1544)

ma1 .2280 0.3061 0.224 0.1868 0.2793 0.1827
(0.1511) (0.1479) (0.1601) (0.1421) (0.1409) (0.1528)

α0 0.0824*** 0.0822*** 0.0822*** 0.0543*** 0.0622*** 0.0629***
(0.0145) (0.0143) (0.0139) (0.0151) (0.0143) (0.0140)

α1 0.10607*** 0.0959*** 0.0983*** 0.1566*** 0.1584*** 0.1558***
(0.0051) (0.0083) (0.0008) (0.0078) (0.0132) (0.0123)

β1 0.8894*** 0.8963*** 0.8949*** 0.8847*** 0.8858*** 0.8862***
(0.0047) (0.0082) (0.0077) (0.0050) (0.0085) (0.0081)

λ - - - -0.0963*** -0.1109*** -0.1038***
(0.0084) (0.0141) (0.0131)

ν - 6.85 1.38 - 7.02 1.39
(0.5065) (0.0265) (0.5171) (0.0261)

Log(L) -9876.45 -9720.09 -9747.11 -9841.29 -9685.72 -9717.04
Diagnostic Checking
Standardized Residuals
Q (5) p value in parentheses 8.58 (0.13) 8.48 (0.13) 9.38 (0.09) 7.63 (0.18) 7.57 (0.18) 8.55 (0.13)
Q (10) p value in parentheses 26.78 (0.00) 26.88 (0.00) 27.70 (0.00) 26.65 (0.00) 27.13 (0.00) 27.86 (0.00)
Q (20) p value in parentheses 39.76 (0.00) 39.88 (0.00) 40..65 (0.00) 39.63 (0.00) 40.18 (0.00) 40.88 (0.00)
Sqrd Standardized Residuals
Q (5) p value in parentheses 3.60 (0.61) 6.28 (0.28) 5.40 (0.37) 1.03 (0.96) 1.36 (0.93) 1.20 (0.94)
Q (10) p value in parentheses 7.85 (0.65) 9.90 (0.45) 9.24 (0.51) 5.18 (0.88) 5.30 (0.87) 5.19 (0.88)
Q (20) p value in parentheses 21.22 (0.38) 22.03 (0.34) 21.72 (0.35) 18.61 (0.55) 18.11 (0.58) 18.17 (0.58)
Information Criteria
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AIC 19765.29 (df 6) 19454.19 (df 7)
19508.22 

(df 7) 19696.59 (df 7) 19387.45 (df 8)
19450.08 (df 

8)

BIC 19805.46 (df 6) 19501.05 (df 7)
19555.09 

(df 7) 19743.45 (df 7) 19441.01 (df 8)
19503.64 (df 

8)
OBS 5,971 5,971 5,971 5,971 5,971 5,971
Wald chi2(2) 36.00 (0.00) 46.25 (0.00) 37.99 (0.00) 41.79 (0.00) 49.59 (0.00) 40.87 (0.00)

Parameter ARMA-GARCH ARMA-GJR-GARCH
 N t GED N t GED

ar1 0.1165 -0.183 -0.0286 -0.0153 -0.1866 -0.0664
(0.1384) (0.0134) (0.1554) (0.1446) (0.1449) (0.1559)

ma1 -0.0281 0.2668 0.1099 0.1033 0.271 0.1477
(0.1394) (0.0131) (0.1547) (0.1442) (0.1420) (0.1546)

α0 0.0477*** 0.0587*** 0.0580*** 0.0509*** 0.0596*** 0.0601***
(0.0150) (0.0160) (0.0140) (0.0152) (0.0143) (0.0141)

α1 0.2083*** 0.1991*** 0.2022*** 0.1109*** 0.1062*** 0.1075***
(0.0081) (0.0161) (0.0136) (0.0050) (0.0092) (0.0083)

β1 0.9794*** 0.9783*** 0.9789*** 0.8930*** 0.8947*** 0.8944***

(0.0019) (0.0037) (0.0032) (0.0047) (0.0080) (0.0075)
λ -0.0754*** -0.0814*** -0.0786*** -0.3053*** -0.3772*** -0.3472***

(0.0054) (0.009) (0.0084) (0.0288) (0.0511) (0.0476)
ν - 7.05 1.39 - 7.02 1.39

(0.5763) (0.0262) (0.5165) (0.0263)
δ 1.4314*** 1.3243*** 1.3648***

(0.0727) (0.1410) (0.1247)
Log(L) -9831.44 -9676.62 -9708.52 -9833.37 -9678.05 -9710.15
Diagnostic Checking
Standardized Residuals
Q (5) p value in parentheses 9.83 (0.08) 7.09 (0.21) 8.90 (0.11) 8.27 (0.14) 7.40 (0.19) 8.81 (0.11)
Q (10) p value in parentheses 28.69 (0.00) 26.34 (0.00) 27.96 (0.00) 27.29 (0.00) 26.87 (0.00) 28.06 (0.00)
Q (20) p value in parentheses 43.73 (0.00) 41.10 (0.00) 42.83 (0.00) 41.15 (0.00) 40.92 (0.00) 42.06 (0.00)
Sqrd Standardized Residuals
Q (5) p value in parentheses 3.56 (0.61) 4.64 (0.46) 4.24 (0.51) 2.25 (0.81) 3.98 (0.55) 3.28 (0.65)
Q (10) p value in parentheses 8.76 (0.55) 10.27 (0.41) 9.66 (0.47) 6.91 (0.73) 9.24 (0.51) 8.22 (0.61)
Q (20) p value in parentheses 34.11 (0.02) 35.19 (0.02) 34.90 (0.02) 26.32 (0.15) 30.14 (0.07) 28.53 (0.10)
Information Criteria
AIC 19676.87 (df 7) 19369.23 (df 8) 19433.05 (df 8) 19682.74 (df 8) 19374.10 (df 9) 19438.31 (df 9)
BIC 19723.74 (df 7) 19422.79 (df 8) 19486.60 (df 8) 19736.30 (df 8) 19434.35 (df 9) 19498.56 (df 9)
OBS 5,971 5,971 5,971 5,971 5,971 5,971
Wald chi2(2) 45.64 (0.00) 41.10 (0.00) 39.59 (0.00) 41.01 (0.00) 48.79 (0.00) 39.74 (0.00)

Asymmetric Leverage Effect

In asymmetric GARCH models, λ1 measures the asymmetry 
in volatility. These models respond asymmetrically to 
positive and negative lagged values of standardized 
residuals. Since negative shocks / bad news tend to have a 
larger impact on volatility, the value of λ1 would be expected 

to be negative. In all our models, λ1 denotes the coefficient 
of leverage effects. The EGARCH, GJR-GARCH, and 
APARCH models are capable of modeling leverage effects. 
Tables 2 and 3 give estimation results of leverage effects of 
three asymmetric basic and enhanced models, respectively. 
We can clearly see the impact of leverage effects in these 
models. All of the asymmetric models show statistically 
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significant leverage effect at one percent significance level. 
For EGARCH, GJR-GARCH, and APARCH models under 
t-distribution, the leverage effect values are -0.0746, -0.1016, 
and -0.3514, respectively, and for ARMA-EGARCH, 
ARMA-GJR-GARCH, and ARMA-APARCH models, the 
leverage effect values are -0.0754, -0.1109, and -0.3772, 
respectively. These results indicate that NIFTY log returns 
have significant leverage effect and bad news have a larger 
impact on volatility. All the parameters in the equations for 
ln(ht) in EGARCH and ARMA-EGARCH with student’s 
t-distribution are highly significant. This result indicates that 
let ht-1 = 1, a one unit decline in εt-1 will increase the log 
of conditional volatility by 0.2703 units (0.1957 + 0.0746) 
in EGARCH model, and 0.2805 units (0.1991 + 0.0814) in 
ARMA-EGARCH model. However, a one unit increase in 
εt-1 is estimated to induce a smaller effect in the log of the 
conditional variance by 0.1211 units (0.1957 - 0.0746) and 
0.1177 units (0.1991 - 0.0814). The implication of these 
results is that bad news has a large effect on the conditional 
volatility and good news has small effect in volatility.  

Diagnostic Checks for Model Adequacy

To check model adequacy, we form standardized residuals 
and squared standardized residuals of each symmetric 
and asymmetric models. We use these estimated residuals 
to obtain Ljung-Box Q-statistics for 5, 10, and 20 lags. 
Standardized residuals are analyzed to observe for no 
remaining serial correlations and squared standardized 
residuals are analyzed to observe for no remaining GARCH 
effects. Table 2 provides diagnostic checks statistics for 
basic GARCH models and Table 3 provides the same for 
ARMA-GARCH models. In basic GARCH models, we do 
not find any remaining GARCH effects. The Q-statistics 
for 5, 10, and 20 lags are statistically insignificant at any 
conventional significance levels. At the same time in basic 
GARCH models, we find remaining serial correlations. The 
Q-statistics are statistically significant indicating that the 
standardized residuals are not white noise process and there 
are remaining serial correlations. We improved our basic 
model by including ARMA (1,1) coefficients. In the ARMA-
GARCH models, the ARMA coefficients are insignificant. We 
once again find that the Q-statistics of squared standardized 
residuals at 5, 10, and 20 lags are statistically insignificant, 
thus indicating the absence of remaining GARCH effects. 
One improvement we notice in these enhanced models is that 
there are no remaining serial correlations in Q(5). However, 
there are still some remaining serial correlations in Q(10) 
and Q(20). With such a large volume of return data, we can 
expect traces of serial correlations in Q(10) and Q(20) lags. 
Results suggest that we get best-fit models when ARMA 

(1,1) coefficients are included in modeling GARCH models 
with high-frequency data spread over long horizon. 

Best-Fit Model

We use two information criterions and log likelihood values 
to choose best-fit models. Undoubtedly, the ARMA-GARCH 
model under student’s t-distribution explains key stylized 
facts of NIFTY return series. This model portrays volatility 
clustering, fat-tail behavior, long memory, and mean 
reversion behavior of asset returns. The leverage effect is 
pertinently model by asymmetric models. However, ARMA-
EGARCH model with student’s t-distribution has better log 
likelihood value and minimum information criterion values. 
Among the asymmetric models, the ARMA-EGARCH model 
appropriately captures the leverage effect. For this model, 
the AIC = 19369.23 and BIC = 19422.79. These information 
criterion values are least among information criterion values 
of all the models considered in this paper. This paper finds 
that the ARMA-GARCH model is appropriate to capture 
the stylized facts of NIFTY return series and the ARMA-
EGARCH model is appropriate to capture leverage effect. 

CONCLUSION
Using high frequency, long horizon, and daily stock market 
returns, this paper empirically examined choice of return 
innovation distribution in symmetric and asymmetric 
GARCH models. As presented and discussed in introduction 
and literature review sections of this paper, the choice of 
return innovation distribution is dissimilar. We obtained 
NSE NIFTY50 data from January 1, 1996 to December 31, 
2019. This is the first study that covers such a long horizon 
and high-frequency daily returns of NIFTY. We applied 
Gaussian distribution, t-distribution, and GED distribution 
to estimate multiple GARCH, EGARCH, GJR-GARCH, 
and APARCH models using 5,971 daily observations. 
Again, to the best of our knowledge, no other research 
paper estimated these many models of NIFTY index under 
multiple return innovation distributions. We observed that 
the NIFTY return series is leptokurtic. The log return series 
is negatively skewed and there is presence of excess kurtosis. 
This behavior is confirmed with J-B test of normality. We 
also observed that the log return series is stationary at level. 
NIFTY index close price series had upward movement. 
The return series and log return series are stochastic. From 
estimated models, we noticed volatility clustering, fat-tails, 
mean reversion, long memory, volatility persistence, and 
leverage effect. All the models are statistically significant at 
any conventional significance level, making over decision 
to choose appropriate return innovation distribution 
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difficult. We relied on log likelihood value, AIC, and BIC 
to choose appropriate innovation distribution. These three 
values are in favor of student’s t-distribution among each 
GARCH model. Based on our results, we recommend 
student’s t-distribution as return innovation distribution 
for long horizon, high-frequency stock market returns. We 
extended our research further and performed diagnostic 
tests on standardized residuals and squared standardized 
residuals to examine presence of serial correlations and 
GARCH effects. We estimated Ljung-Box Q-statistics for 
5, 10, and 20 lags representing week, fortnight, and month, 
respectively. In basic GARCH (1,1) models, we observed 
no remaining GARCH effect. However, there are remaining 
serial correlations. We experimented with different model 
specification and finally we enhanced our basic models 
with ARMA (1,1)-GARCH (1,1) models. In the ARMA 
(1,1)-GARCH (1,1) models, there are no remaining serial 
correlations and remaining GARCH effects. In the enhanced 
models also, model-selection criterion values are in favor 
of student’s t-distribution. Among the asymmetric GARCH 
models, ARMA-EGARCH (1,1) had better model-selection 
criterion values and appropriately modeled leverage 
effect. As per the ARMA-GARCH (1,1) specifications, the 
unconditional volatility of NIFTY log returns is 3.24 and the 
mean reversion period is 88 days. The ARMA-EGARCH 
(1,1) model predicts for every unit change in unconditional 
volatility bad news will have 2.805 units impact indicating 
significant leverage effect. Finally, the v values in all the 
models indicated that NIFTY log return series has thicker 
tail behavior than normal distribution. We conclude that 
student’s t-distribution is appropriate distribution density 
for high-frequency NIFTY log return series. In addition, 
we recommend ARMA-GARCH (1,1) model and ARMA-
EGARCH (1,1) with t-distribution as best-fit symmetric and 
asymmetric models to estimate stylized facts of NIFTY log 
return series. In this paper, we do not consider low-frequency 
– monthly return series. Future studies may consider low-
frequency data and other GARCH family models along with 
the models estimated in this paper. 
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