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INTRODUCTION

The underlying strategy of hedging is to invest  
simultaneously in cash and futures market, but in opposite 
direction, so that the price change in one market offset the 
price change in another market. In other words, losses in one 
market are offset by the gains from the other. The essence of 
hedging is the presence of cost-of-carry relationship between 
cash and futures market, which allows co-movement of 
prices in both the markets. In the cost-of-carry regime, both 
cash and futures prices are tied together and the arrival of 
information in the financial market causes contemporaneous 
change in both spot and futures prices. Thus, existence of 
stable long-run relationship between spot and futures market 
is a pre-requisite for efficient hedging (Ederington, 1979).

There are three different views on hedging based upon 
investor’s objective to hedge. The traditional theory assumes 
investor as a pure risk avoider; whereas, Working (1953) 
views hedger as a pure risk-taker speculating on the spread 
between futures and cash prices. The third theory adopts 
a hybrid approach and claims that a hedger neither purely 
avoids risk nor does he increase his risk to the highest levels. 
Instead, hedger prefers a portfolio that optimizes his level 

of risk and return. This theory, known as Portfolio Hedging 
Theory, became the most widely accepted framework for 
designing hedge strategy and the present study applies the 
same in realising its objectives.

The literature on estimation of optimal hedge ratio initiated 
with the proposal of Minimum-Variance Hedge Ratio 
(MVHR) framework suggested by Johnson (1960), Stein 
(1961) and Ederington (1979). Johnson (1960) and Stein 
(1961) proposed a theoretical background for estimating 
MVHR, known as Portfolio hedging theory, based upon 
which, Ederington (1979) suggested that MVHR can be 
estimated as the ratio of covariance of spot-futures returns 
and variance of futures returns. In this view, Ederington 
(1979) suggested single regression equation (Ordinary Least 
Square (OLS)) that regresses cash returns upon futures return 
for estimating optimal hedge ratio. Ederington’s OLS is the 
most simplest of all models; therefore, is highly appreciated 
by a large body of literature (Malliaris & Urrutia, 1991; 
Deaves, 1994; Lien et al., 2002; Lien, 2005; Bhargava and 
Malhotra, 2007; Moon et al., 2009; Mandal, 2011; Bonga 
and Umoetok, 2016).

Apart from this, literature suggests a wide range of 
methodologies for estimating optimal hedge ratio to best fit 
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Abstract  Hedging is widely used as a risk-minimizing mechanism where hedgers invest simultaneously in cash and futures market, but 
in opposite direction, so that the price change in one market offsets price change in another market. Present study attempts to examine the 
hedging effectiveness of equity and currency futures contracts traded at National Stock Exchange of India, over the period January 2011 to 
December 2018. The sample size consists of three benchmark indices of equity futures market (i.e. NIFTY50, NIFTYIT and BANKNIFTY) 
and four currency futures contracts (i.e. USD, EURO, YEN and GBP). Optimal hedge ratios have been estimated by using five different 
methods. The findings suggest that equity futures market is more efficient as compared to currency futures market as variance reduction 
is found to be more than 95% in case of equity futures contracts; whereas in case of currency futures contracts, it is found to be less than 
40%. Secondly, it is also found that for six (out of seven futures contracts understudy), hedging effectiveness is found to be highest using 
Ordinary Least Square (OLS) method, whereas for only NIFTYIT, it is found to be highest using Vector Autoregression (VAR) and Vector 
Error Correction model (VECM) methods of estimating optimal hedge ratio. Hence, the study also suggests that constant hedge ratios 
perform superior to time-varying hedge ratios.
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the varied characteristics observed in the financial time-series 
from time to time. For instance, a number of studies observe 
that spot-future prices exhibit co-integrating relationship in 
the long-run (Ghosh, 1992; Chou et al., 1996) and lead-lag 
relationship in the short-run, therefore, suggests that optimal 
hedge ratio can be determined using VECM and VAR models, 
respectively. Nonetheless, numerous studies (Choudhary, 
2004; Lee & Chien, 2010) claim superior performance of 
the time varying hedge ratio over its counterparts. 

Furthermore, with the advancement of econometrics, highly 
improved procedures and models have been suggested by 
the literature for estimating optimal hedge ratios that capture 
the time-varying nature of relationship between spot and 
futures prices. Some of the widely used methods include 
GARCH, B-GARCH, M-GARCH, etc. Though, voluminous 
literature (see, Park & Switzer, 1995; Lypny & Powalla, 
1998; Moschini & Myers, 2002; Choudhary, 2003; Floros & 
Vougas, 2004; Yang & Allen, 2004; Choudary, 2004; Floros 
& Vougas, 2006; Lee & Yoder, 2007; Srinivasan, 2011; 
Bekkerman, 2011; Kim et al., 2014; Basher & Sadorsky, 
2016), observes superiority of time-varying hedge ratios over 
constant hedge ratios, a strand of literature (see, Lien, 2005; 
Bhargava and Malhotra, 2007; Maharaj et al., 2008; Rao 
and Thakur, 2008; Lee and Chien, 2010; Awang et al., 2014; 
Gupta and Kaur, 2015b; Kaur and Gupta, 2018c) observes 
superiority of constant hedge ratios over time-varying hedge 
ratios and suggests that econometric sophistication does not 
help to improve hedging effectiveness.

Further, Ederington (1979) suggested a measure of hedging 
effectiveness, based upon portfolio theory approach proposed 
by Johnson (1960) and Stein (1961), according to which 
hedging effectiveness is measured as proportionate reduction 
in standard deviation of returns from hedged portfolio. 
Ederington’s measure to estimate hedging effectiveness is 
simple to compute and understand and, therefore, has been 
highly appreciated by various empirical studies (see, Park & 
Switzer, 1995; Holmes, 1995; Lypny & Powalla, 1998; Yang 
& Allen, 2004; Floros & Vougas, 2004, 2006; Bhargava & 
Malhotra, 2007; Bhaduri & Durai, 2008; Men & Men, 2008; 
Gupta & Singh, 2009; Pradhan, 2011; Hou & Li, 2013). 

Apart from the above discussed issues, National Stock 
Exchange (NSE) of India holds a significant position in 
world’s top derivatives exchanges as it is consistently being 
ranked among top-ten derivatives exchanges of the world 
in terms of trading of futures contracts since year 2011, 
and, presently, offers futures contracts on more than 190 
securities and 9 indices, all of which observes voluminous 
trading. Further, in terms of trading of currency futures and 
options contracts, NSE became world’s leading exchange in 
the year 2017. However, despite voluminous increase in the 

trading of currency futures contracts in India, there is dearth 
of literature examining the hedging effectiveness of futures 
contracts, especially currency futures contracts. To the best of 
researcher’s knowledge, only one study (Lingareddy, 2013) 
attempts to examine the hedging effectiveness of currency 
futures contracts in India; whereas, most of the studies have 
restricted their scope to investigate the hedge effectiveness 
of either equity futures contracts or commodity futures 
contracts. Furthermore, debate on superiority of constant and 
time-varying hedge ratio models is not yet settled as, on the 
one hand, voluminous studies1 support time-varying hedge 
ratio models; whereas, on the other hand, numerous studies2 
support constant hedge ratio models. Therefore, in the light 
of the above discussion following research questions arise:

Is currency futures market equally efficient as equity futures 
market in India?

Which optimal hedge ratio model generates most effective 
hedge ratio for both equity and currency futures contracts, 
whether constant or time-varying hedge ratio model?

Hence, in order to address the above-mentioned research 
issues, the present study attempts to contribute to the 
existing literature by examining hedging effectiveness of 
both currency as well as equity futures contracts in India.

DATABASE AND RESEARCH METHODOLOGY

The focus of the study is to investigate hedging effectiveness 
of futures contracts of equity and currency futures market in 
India. The sample of the study comprises of futures contracts 
on three benchmark equity indices namely NIFTY50, 
NIFTYIT and BANKNIFTY, being traded at NSE as well 
as futures contracts on four currencies namely, USD, GBP, 
YEN and EURO being traded at NSE. The data has been 
collected for near month futures contracts for a period of 
eight years from January 1, 2011 to December 31, 2018 from 
the website of NSE (www.nseindia.com). The sample stocks 
have been selected keeping in consideration their consistent 
trading and high liquidity.

1	 Park and Switzer (1995), Lypny and Powalla (1998), Mos-
chini and Myers (2002), Choudhary (2003), Floros and Vou-
gas (2004), Yang and Allen (2004), Choudary (2004), Floros 
and Vougas (2006), Lee and Yoder (2007), Srinivasan (2011), 
Bekkerman (2011), Kim et al. (2014) and Basher and Sador-
sky (2016).

2	 Park and Switzer (1995), Holmes (1995), Lypny and Pow-
alla (1998), Yang and Allen (2004), Floros and Vougas (2004, 
2006), Bhargava and Malhotra (2007), Bhaduri and Durai 
(2008), Men and Men (2008), Gupta and Singh (2009), Prad-
han (2011), Hou and Li (2013).
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In order to obtain optimal number of futures contracts to hedge 
a given spot position, a wide range of models are available as 
discussed in section 2. However, as far as the present study 
is concerned, out of the models suggested by the literature, 
a total of five econometric procedures have been used for 
estimating optimal hedge ratio. These models are one-to-one 
naive model, standard OLS, Vector Autoregression (VAR), 
Vector Error Correction model (VECM) and Generalized 
Autoregressive Conditional Heterskedasticity (GARCH) as 
discussed below:

Research Methods for Estimating Optimal Hedge 
Ratio

●● Naïve Hedge Ratio: The first is the naive or traditional 
one-to-one hedging model, which assumes that 
futures and cash market observes perfect correlation; 
therefore, optimal hedge ratio suggested by this model 
is one which implies equal investment in both futures 
and spot market. 

●● Ordinary Least Squares (OLS) Method: The second is 
OSL method, also known as single equation method in 
which cash market returns are regressed upon futures, 
returns to estimate optimal hedge ratio as given in 
equation (1). Suggested by Ederington (1979), this 
method is the most widely used for estimating OHR as 
discussed in section 2 and is specified as follows: 

	 Rs,t = α0 + β1Rf,t + µt 	 (1)

		  In the given regression equation (1), Rs,t is the cash 
returns, Rf,t is the futures return, α0 is the intercept 
term, β1 is the optimal hedge ratio and µt is the error 
term.

●● Vector Autoregression (VAR): Vector Autoregression 
overcomes the limitation of OLS regression equation 
(Equation 1) by modelling the serial correlation of 
residual series, which OLS fails to capture. VAR model 
can be specified as under:
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After running the given regression equations, optimal hedge ratio can be 

estimated as ratio of covariance of µs,t and variance of µft. However, this model fails to 

capture the long-run cointegration between spot and futures prices. 

(iv) Vector Error Correction Model (VECM): Ghosh (1993) and Lien (2004) argue that 

when spot-future prices are cointegrated in the long-run, the OLS equation gives an 

underestimated value of the optimal hedge ratio. Therefore, VAR model with an error 

correction term (known as VECM) is used to account for long-run co-integrating relationship 

in addition to capturing short-run lead-lag relationship. The VECM model can be specified as 

below:  
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The optimal hedge ratio using VECM can be estimated as ratio of covariance of (µs,t) and 

variance of (µft), as computed in case of VAR model above. 
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Bollerslev, 1987; Myers, 1991; Park and Switzer, 1995; 
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has evidenced that stock returns are heteroscedastic 
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Heteroscedasticity (ARCH) model (Engle, 1982) 
generalized by Bollerslev (1986) called GARCH (p,q) 
in which conditional variance depends not only upon 
the squared residuals of the mean equation but also on 
its own past values. The GARCH (p, q) model is given 
by equation (6)

	

(v) Generalized Autoregressive Conditional Heterskedasticity (GARCH): In equation (1), if 

the variance of error term is constant,3 the hedge ratio estimated through OLS method will be 

valid; however, vast amount of academic literature (Engle, 1982; Bollerslev, 1987; Myers, 

1991; Park and Switzer, 1995; Floros and Vougas, 2004; Pattarin and Ferretti, 2004) has 

evidenced that stock returns are heteroscedastic in nature. Therefore, Autoregressive 

Conditional Heteroscedasticity (ARCH) model (Engle, 1982) generalized by Bollerslev 

(1986) called GARCH (p,q) in which conditional variance depends not only upon the squared 

residuals of the mean equation but also on its own past values. The GARCH (p, q) model is 

given by equation (4.3) 

)6.(....................  h
1

2

1
t 







p

j
tjtjit

p

i
i h   

Where, ht is the conditional volatility, αi is the coefficient of ARCH term with order i 

to p and βj is the coefficient of GARCH term with order j to q. The conditional volatility as 

defined in equation (4.3) is determined by three effects: namely, the intercept term (ω), the 

ARCH term (αiε2t-i) and the forecasted volatility from the previous period called GARCH 

component (βjht-j). Parameters ω and α should be higher than 0 and βj should be positive in 

order to ensure conditional variance (ht) to be non-negative. Besides this, it is necessary that 

αi+βj<1, which secures the covariance stationarity of conditional variance. Therefore, if 

variance of error term in equation (4.2) is not constant, equation (4.3) would be attached to 

equation (4.2); hence, the estimation of hedge ratio (β1) would be subject to the nature of 

index return’s volatility. 

 

2.2 Research Method for Estimating Hedging Effectiveness 

                                                            
3 Langrage Multiplier Test whose null hypothesis states that variance of error term is homoscedastic. Therefore rejection of null hypothesis 
will ask researcher to apply appropriate model out of GARCH family. 
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conditional variance (ht) to be non-negative. Besides this, 
it is necessary that αi+βj<1, which secures the covariance 
stationarity of conditional variance. 

Research Method for Estimating Hedging 
Effectiveness

After estimating the optimal hedge ratio(s) using the above-
discussed econometric procedures, their effectiveness has 
been tested by using the measure suggested by Ederington 
(1979), where hedging effectiveness is measured as a 
proportionate reduction in the variance of hedged portfolio 
as compared to unhedged portfolio, as given below:

	 Hedge effectiveness = 

After estimating the optimal hedge ratio(s) using the above-discussed econometric 

procedures, their effectiveness has been tested by using the measure suggested by Ederington 

(1979), where hedging effectiveness is measured as a proportionate reduction in the variance 

of hedged portfolio as compared to unhedged portfolio, as given below: 

Hedge effectiveness = Var (U) - Var (H)
Var (U)

 ............................(7) 

In the above equation,  

Variance of Unhedged Portfolio [VAR (U)] = σs2 and; 

Variance of Hedged Portfolio [VAR (H)] = σs2 + h*2σf 2 – 2h*σs,f 

3. ANALYSIS AND INTERPRETATION 

3.1 Preliminary Analysis 

As the present study involves the analysis of financial time-series to achieve its objectives, 

the first step is to test the presence of unit-roots in the series. ADF unit-root test has been 

applied in three different forms (stationarity with only trend, with trend and intercept and 

without both) to check the stationarity of series. As expected, the price series was found to be 

non-stationary. Hence, price series is transformed by taking log of first difference of prices, 

and the resultant return series is found to be stationary4 paving the way for further analysis. 

Further, Table 1 reports the statistics of lower and higher moments of returns of spot and 

futures contract for all the seven futures contracts under study. All futures contracts show 

excess kurtosis and their coefficient of skewness is negative implying that the return series 

are leptokurtic in nature. These statistics indicate that the returns are not normal, which is 

further supported by Jarque-Bera test that rejects the null hypothesis that cash and futures 

market returns are normal. 

                                                            
4 The results of ADF unit root test have not been reported in the paper, but are available on demand. 
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	Variance of Hedged Portfolio [VAR (H)] = σs
2 + h*2σf 

2		
	 – 2h*σs,f

ANALYSIS AND INTERPRETATION

Preliminary Analysis

As the present study involves the analysis of financial time-
series to achieve its objectives, the first step is to test the 
presence of unit-roots in the series. ADF unit-root test has 
been applied in three different forms (stationarity with only 
trend, with trend and intercept and without both) to check the 
stationarity of series. As expected, the price series was found to 
be non-stationary. Hence, price series is transformed by taking 
log of first difference of prices, and the resultant return series 
is found to be stationary4 paving the way for further analysis.

Further, Table 1 reports the statistics of lower and higher 
moments of returns of spot and futures contract for all the 
seven futures contracts under study. All futures contracts show 
excess kurtosis and their coefficient of skewness is negative 
implying that the return series are leptokurtic in nature. These 
statistics indicate that the returns are not normal, which is 
further supported by Jarque-Bera test that rejects the null 
hypothesis that cash and futures market returns are normal.

4 	The results of ADF unit root test have not been reported in the 
paper, but are available on demand.

Table 1:  Descriptive Statistics of Cash and Futures Returns

Market Symbol Variables Count Mean Std. Dev. Skewness Kurtosis Jarque-Bera
Equity NIFTY50 Futures 1980 0.000287 0.009970 -0.198879 4.939804 323.4868*

Cash 1980 0.000287 0.009727 -0.197010 4.861382 298.6495*
NIFTYIT Futures 1980 0.000332 0.012448 -0.636017 12.02611 6854.814*

Cash 1980 0.000331 0.012609 -0.700567 12.27489 7258.906*
BANKNIFTY Futures 1980 0.000422 0.014164 0.047986 5.424267 485.8635*

Cash 1980 0.000421 0.013937 0.090758 5.432967 491.3110*
Currency USD Futures 1933 0.000229 0.004702 0.360850 7.786474 1887.187*

Cash 1933 0.000231 0.005808 0.808434 104.9759 837769.7*
GBP Futures 1933 0.000129 0.006115 -0.774306 14.53845 10916.14*

Cash 1933 0.000126 0.011456 0.506934 436.9271 15165496*
YEN Futures 1933 7.43E-05 0.007504 0.295561 6.466128 995.7742*

Cash 1933 7.23E-05 0.008782 0.697715 67.21654 332291.7*
EURO Futures 1933 0.000207 0.009480 16.45255 533.9318 22790982*

Cash 1933 0.000153 0.008311 0.551575 153.7850 1831303*

               * Significant at 1% level of significance.

Optimal Hedge Ratio and Hedging Effectiveness

The estimation of optimal hedge ratio has been done using 
five hedging models proposed in the literature. These results 
are reported in Table 2. It is found that in case of all seven 
futures contracts, the optimal hedge ratio of one suggested by 

traditional naive hedging approach is the highest estimate; 
whereas optimal hedge ratio estimated by either OLS, 
VAR, VECM or GARCH model is lowest for all seven 
futures contracts. It implies that the cost of hedging using 
naïve hedge ratio is highest as compared to other optimal 
hedge ratio models. Another observable fact is that all the 
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estimates of the OHR are very close to each other making 
it insignificant for investors to decide upon the model to be 

used for hedging, which confirms the findings of Yaganti and 
Kamiah (2012).

Table 2:  Optimal Hedge Ratio of Equity and Currency Futures Contracts

Market Symbol Optimal Hedge Ratio
Naive OLS VAR VECM GARCH

Equity NIFTY50 1H 0.960812L 0.9648321 0.9669077 0.978575
NIFTYIT 1H 0.999513 0.9994151 0.999079 L 0.999758
BANKNIFTY 1 H 0.973164 L 0.9771773 0.9771728 0.987283

Currency USD 1H 0.651657 0.6255544 L 0.6283243 0.797373
GBP 1H 0.689781 0.6744763 L 0.6752571 0.858581
YEN 1 H 0.736365 L 0.7477514 0.74758491 0.860067
EURO 1 H 0.250565 0.2426034 0.2711070 0.228568 L

             L = Lowest Optimal Hedge Ratio, H = Highest optimal hedge ratio

Further, using Variance Reduction Framework, the effectiveness 
of optimal hedge ratios obtained using five models applied 
in the study has been estimated and the results are shown in 
Table 3. A significant observation from these results is that OLS 
hedge ratio gives highest hedging effectiveness for six out of 
seven futures contracts (NIFTY50, BANKNIFTY, USD, GBP, 

YEN and EURO) under study. The exception to these results is 
NIFTYIT for which VAR and VECM model provide maximum 
variance reduction in hedged portfolio. These results imply that 
investors can use simple OLS model for estimating optimal 
hedge ratio instead of using time-varying models like GARCH, 
which are complex to understand.

Table 3:  Variance Reduction in Equity and Currency Futures Contracts

Symbol
Hedging Effectiveness

Naive OLS VAR VECM GARCH

Equity 
NIFTY50 0.967358 L 0.969011H 0.968990 0.968966 0.968662
NIFTYIT 0.972648 L 0.972648 L 0.972649 H 0.972649 H 0.972648 L

BANKNIFTY 0.976416 L 0.97718 H 0.977177 0.977172 0.976966

Currency 

USD 0.198359 L 0.278045 H 0.277610 0.277698 0.264064
GBP 0.107939 L 0.135422 H 0.135358 0.135364 0.127269
YEN 0.344625 L 0.395523 H 0.395422 0.395424 0.384280
EURO -0.649344L 0.081592 H 0.081513 0.081036 0.080970

                 L = Lowest Optimal Hedging Effectiveness, H = Highest Hedging Effectiveness

CONCLUSION

The sample of the study comprises of futures contracts on 
three benchmark equity indices namely NIFTY50, NIFTYIT 
and BANKNIFTY being traded at NSE as well as futures 
contracts on four currencies namely, USD, GBP, YEN and 
EURO being traded at NSE, chosen on the basis of high 
liquidity and consistent trading history. The data has been 
collected for near month futures contracts for a period of 
eight years from January 1, 2011 to December 31, 2018.

For estimating the optimal hedge ratio, five econometric 
procedures have been used including naive, ordinary least 
square, vector autoregression, vector error correction and 
generalized autoregressive conditional heterskedasticity 

model. The results of optimal hedge ratio suggest that the 
estimates of the OHR are very close to each other for all the 
seven futures contracts under study. It is an important finding 
for investors as it makes it insignificant for them to decide 
upon the model to be used for hedging. These findings are 
consistent with the findings of Yaganti and Kamaiah (2012). 

Further, hedging effectiveness of the optimal hedge ratios 
have been estimated using variance-reduction framework 
of Ederington (1979) and the results suggest that simple 
OLS model performs best in providing highest hedging 
effectiveness as six out of seven futures contracts (namely, 
NIFTY50, BANKNIFTY, USD, EURO, GBP and YEN) 
favour OLS. In other words, the results indicate that the 
investors can reduce the variance of their hedged portfolio 
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to the maximum extent by using OLS model for investing 
in cash and futures market. These results are consistent with 
the findings of Malliaris and Urrutia (1991), Deaves (1994), 
Lien et al. (2002), Lien (2005), Bhargava and Malhotra 
(2007), Moon et al. (2009), Mandal (2011) and Bonga and 
Umoetok (2016).

Overall, the findings of the study suggest that futures 
contracts in equity and currency market provide efficient 
platform for hedging; however, equity futures market is 
found to be comparatively more efficient as compared to 
currency futures market. Moreover, study also suggests 
that investors can use simple OLS model to achieve highest 
hedging effectiveness rather than using complicated time-
varying models like GARCH.

The present study can be further extended to examine if 
other time-varying hedge ratio models like MGARCH, 
etc., can provide better hedging effectiveness as compared 
to constant hedge ratio models. Moreover, in future, 
research can be done to examine the hedging effectiveness 
of currency and equity futures markets of other countries 
as different countries have different market microstructure 
settings. Furthermore, hedging effectiveness of individual 
stock futures contracts may help to generalize the results of 
the present study.
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