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Abstract

This study aims at testing the optimal mechanism of 
bank lending decisions using artificial intelligence 
techniques. It is based on a sectoral diversification 
strategy to minimise risk and maximise return of 
credits facilities portfolio and support bank managers 
in their decision making. In this context, we suggest 
a dynamically self-regulating method to optimise the 
bank lending decisions, by the application of the meta-
heuristic approach represented by genetic algorithms 
optimization. It has been used and improved in more 
recent empirical studies; the method has become a 
hot research topic. The reason for choosing GA is its 
convergence and flexibility in solving multi-objective 
optimization problems, such as credit assessment, 
portfolio optimization, and bank lending decision. 
Furthermore, we have also used Markowitz model 
to construct a mean-variance optimization problem, 
based on estimate expected return and risk. Finally, 
the optimal loans portfolio, among 11 economic activity 
sectors in the Kingdom of Saudi Arabia during the 
period 1998-2020, has been selected. We have also 
compared the results of the genetic algorithm with the 
classic Markowitz model in its static form.

Keywords: Credit Risks, Optimal Loans Portfolio, 
Return & Risk, Sectoral Diversification, Genetic Algorithms 
optimization

Introduction

Nowadays, bank lending is characterised by a steady 
increase in demand for credit resources, while increasing 
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the share of overdue debt in the bank’s credit portfolio. 
Credit operations are one of the main activities of the 
bank and contribute a significant part to its income. The 
reliability and financial stability of banks depend on the 
composition and structure of the credit portfolio, as well 
as the adequate management process. Regarding this, the 
design of a high-quality credit portfolio structure that is 
directly related to the credit risk level is a priority for any 
bank (Orlova, 2020). Therefore, a lot of contemporary 
studies have focused their attention on how to manage 
banking risks, control them, and make investment and 
financial decisions in the light of strict regulations, and 
administrative systems and methods that ensure the 
bank to define and accurately assess these risks, classify, 
and measure them. Appropriate decisions can be taken 
to reduce the risks. Banking risks management using 
traditional ways, according to the requirements of the 
new Basel banking standards (Basel I, II, III), credit risk 
insurance, credit rating systems and its role in mitigating 
and controlling credit risk, Credit-Scoring (Z-Score), 
credit derivatives, and the Tobin’s Q equation, were 
adopted.

Consequently, our research paper is the justification 
and development of new techniques and models for 
the management of bank lending that reduces credit 
risks and increases the efficiency of bank lending 
decisions effectively. The success of any bank in this 
very competitive lending environment depends largely 
on the way and manner in which the loan portfolio of 
the banks is managed. So, lending to firms is the basic 
business activity for every commercial bank. This means 
portfolio management is the most important activity for 
getting maximum returns and minimum risk from bank 
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loans. It is an indisputable fact that most banks operating 
in the world are faced with the complex problem of how 
to manage their loans portfolio in such a manner that the 
goals of the bank are best achieved (Gupta, 2018).

Recently, the optimization problems we faced have 
become more complicated. In many cases, we need to 
consider several conflicting objectives and satisfy a 
variety of conditions. Such problems can be modelled 
as multi-objective optimization problems (MOPs) (Jiaxu 
Ning et al., 2018). Some methods based on artificial 
intelligence, such as genetic algorithm, have been applied 
to overcome this problem. GAs are stochastic, heuristic 
techniques based on the natural selection principles, and 
they can deal with nonlinear optimization problems with 
non-smooth and even non-continuous objectives, and 
continuous and/or integer variables (Lin et al., 2005). 
So, our search results will try to answer the following 
question.
 ● How do genetic algorithms perform better, com-

pared to traditional approaches for loans portfolio 
optimization?

Research Background

Computational finance is an emerging application 
field of meta-heuristic algorithms. In particular, these 
optimization methods are becoming the alternative when 
dealing with realistic versions of several decision-making 
problems in finance, such as rich portfolio optimization 
and risk management. In order to better understand this, 
we present some recent studies on our research.

The researcher El Hachloufi Mostafa (2013), in his study, 
used the genetic algorithms and the model of Markowitz 
to solve portfolio optimization for loans in Islamic banks, 
using the Islamic financing formulae like speculation and 
murabaha, and concluded, through simulation results, 
that financing in the form of murabaha is less risky than 
speculation.

The study conducted by Misra (2013) has built portfolio 
with mean-variance dominating, for both AAA rating and 
AA rating. The GA technique was applied to a leading 
bank in India. The portfolio, designed as per Indian 
Banking Regulations, has outperformed the current 
portfolio of the bank. This model can be further improved 
if optimization is also done inside each asset class, taking 

into account the credit class of each asset.

Majid Abdolbaghi and All (2013) presented research, 
which was done in the framework of the granted facilities. 
The paper covers one of the commercial banks, from 
2010 to 2012, and studies the effective interest rate, 
dishonoring rate of the granted facilities within the format 
of Islamic contracts in different sections, and determines 
the real portfolio of granting facilities. It then determines 
the optimum facilities portfolio using the multi-purpose 
genetic algorithm. The findings show that the resulting 
optimum facilities portfolio is different from the current 
portfolio of the bank, and can be tackled with different 
limitations and policies in granting facilities. They also 
indicate that the effective interest rate and the degree of 
efficiency of facilities based on the presented model are 
higher than those of the current facilities portfolio.

The researcher Bushra Abdullah Sht (2014), has used 
genetic algorithms to choose the best borrowers to avoid 
the risk of non-payment of loans (credit risk), relying on 
the bank’s database; it contains a set of characteristics of 
each borrowed customer and from it simulation of genetic 
algorithms arranges the granted loans according to the 
return and risk system.

The main contribution of the paper by Roxana Fekri 
and Al (2016) is the creation of a project portfolio 
selection model that facilitates how Iranian banks would 
make investment decisions on proposed projects to 
satisfy bank profit maximisation and risk minimisation, 
while focusing on national policies such as Resistance 
Economy Policies. The considered problem is formulated 
as a multi-objective integer programming model. A 
framework called Multi-Objective Electromagnetism-
like (MOEM) algorithm is developed to solve this NP-
hard problem. To further enhance MOEM, a local search 
heuristic based on simulated annealing is incorporated in 
the algorithm. In order to demonstrate the efficiency and 
reliability of the proposed algorithm, a number of tests 
are performed. The MOEM results are compared with 
two well-known multi-objective genetic algorithms in 
literature, i.e. Non-dominated Sorting Genetic Algorithm 
(NSGA-II) and Strength Pareto Evolutionary Algorithm 
(SPEA-II) based on some comparison metrics. In 
addition, these algorithms are compared with an integer 
linear programming formulation for small instances. 
Computational experiments indicate the superiority of the 
MOEM over existing algorithms.
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The researchers Noura Metawa and Al (2017) developed 
a GA model that facilitates how banks would make 
an efficient decision in case of a cutback on lending 
supply when faced with a negative liquidity shock, 
while staying focused on the main objective of bank 
profit maximisation. The proposed model is tested using 
both simulated and real data. The results show that the 
proposed GA model greatly increases bank profit using 
the suggested lending decision in the case of real data. For 
future research, we suggest using this GA model for loan 
portfolio optimization using small and medium business 
customers, instead of regular customers.

Portfolio Optimization - A Theoretical 
Perspective

Portfolio optimization is one of the most challenging 
problems in the field of finance. Selecting the weights of 
assets to invest in a portfolio to meet the expectations about 
risk and returns makes this problem crucial. In dealing 
with this problem, Harry Markowitz (1952) developed 
a quantitative model in its static and dynamic form, 
also called mean-variance model within multi-objective 
optimization problems form (MOP), respectively (S. 
Slimane & M. Benbouziane, 2012). Although Markowitz’s 
theory uses only mean and variance to describe the 
characteristics of returns, his theory about the structures 
of a portfolio became a cornerstone to modern portfolio 
theory (Fama, 1970; Hakansson, 1970; Hakansson, 1974; 
Merton, 1990; Mossin, 1969).

Mathematical Model of Markowitz

Consider a more general case with n risky securities. 
Notations: for i = 1, ..., n
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The previous relation shows the decomposition of the variance of the portfolio returns into two 

components. This relation proves that the marginal contribution of a given asset to the risk of the 

whole portfolio is not reduced to its own risk (its variance), but also takes account of its potential 

correlation to other securities. This latter property induces the diversification effect. 

From equation 3.2, the partial derivative with respect to any weight wi is deduced as: 
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Genetic Algorithm Specifications
Genetic algorithms are implemented in a computer 
simulation environment in which a population of abstract 
representations (called chromosomes or the genotype of 
the genome) of candidate solutions (called individuals, 
creatures, or phenotypes) to an optimization problem 
evolves towards better solutions. Traditionally, solutions 
are represented in binary as strings of 0s and 1s, but other 
encodings are also possible. The evolution usually starts 
from a population of randomly generated individuals 
and happens in generations. In each generation, the 
fitness of every individual in the population is evaluated; 
multiple individuals are stochastically selected from the 
current population (based on their fitness), and modified 
(recombined and possibly randomly mutated) to form 
a new population. The new population is then used 
in the next iteration of the algorithm. Commonly, the 
algorithm terminates when either a maximum number of 
generations has been produced, or a satisfactory fitness 
level has been reached for the population. If the algorithm 
has terminated due to a maximum number of generations, 
a satisfactory solution may or may not have been reached. 
The conception of the new population is made by applying 
the genetic operators, which are selection, crossover, and 
mutation (Randy L. Haupt et al., 2004).
 ● Selection: The new individuals selection is made as 

follows. Calculate the reproduction probability for 
each individual.

 

of generations, a satisfactory solution may or may not have been reached. The conception of the new 

population is made by applying the genetic operators, which are selection, crossover, and mutation 

(Randy L. Haupt et al., 2004). 

 Selection: The new individuals selection is made as follows. Calculate the reproduction 

probability for each individual. 

𝑃𝑃𝑖𝑖 =
𝑓𝑓𝑖𝑖

∑ 𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=1

 

Where, f is the fitness of the individual i (a fitness function is needed to evaluate the quality of each 

candidate solution with regard to the task to be performed); n is the size of the population. Each time 

a single chromosome is selected for the new population. This is achieved by generating a random 

number r from the interval [0, 1]. If r ≺ P1, then select the first chromosome, otherwise select the ith 

chromosome, such as 𝑃𝑃𝑖𝑖−1 ≺ 𝑟𝑟 ≺ 𝑃𝑃𝑖𝑖. 
 Crossover: The crossover operator is as follows. Population resulting from selection is 

divided into two parts. Each pair formed will undergo the crossover with a certain probability 

Pc. Many different types of crossovers exist in literature; for example, single point crossover, 

two-point crossover, and arithmetic crossover. 

 Mutation: The individuals in the population after crossover will then undergo a process of 

mutation; this process is to randomly change some bits, with a certain probability m P. Genetic 

algorithms are more flexible than most search methods because they require only information 

concerning the quality of the solution produced by each parameter set (objective function 

values) and not like many optimisation methods, which require derivative information, or 

even more, complete knowledge of the problem structure and parameters (Bouktir et al., 

2004). 

There are some differences between GAs and traditional searching algorithms (Augusto et al., 2006). 

They could be summarised as follows: 

 They work with a coding of the parameter set and not the parameters themselves; 

 They search from a population of points and not a single point; 

 They use information concerning payoff and not derivatives or other auxiliary knowledge; 

 They use probabilistic transition rules and not deterministic rules. 

5. Descriptive Data Analysis 
 
We seek to determine the optimal weights for the banking credit portfolios in Saudi Arabia for a 

period of 22 years (1998-2020) using SAMA (Saudi Arabian Monetary Authority) database. 

Therefore, we will present the statistical characteristics of our time series of database that have been 

selected. It includes 11 economic activity sectors (agriculture and fishing, manufacturing and 

processing, mining and quarrying, electricity, water, gas and health services, building and 

Where, f is the fitness of the individual i (a fitness function 
is needed to evaluate the quality of each candidate 
solution with regard to the task to be performed); n is the 
size of the population. Each time a single chromosome 
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generating a random number r from the interval [0, 1]. If r  
P1, then select the first chromosome, otherwise select the 
ith chromosome, such as 
 ● Crossover: The crossover operator is as follows. 

Population resulting from selection is divided into 

two parts. Each pair formed will undergo the cross-
over with a certain probability Pc. Many different 
types of crossovers exist in literature; for example, 
single point crossover, two-point crossover, and 
arithmetic crossover.

 ● Mutation: The individuals in the population after 
crossover will then undergo a process of mutation; 
this process is to randomly change some bits, with a 
certain probability m P. Genetic algorithms are more 
flexible than most search methods because they re-
quire only information concerning the quality of 
the solution produced by each parameter set (objec-
tive function values) and not like many optimiza-
tion methods, which require derivative information, 
or even more, complete knowledge of the problem 
structure and parameters (Bouktir et al., 2004).

There are some differences between GAs and traditional 
searching algorithms (Augusto et al., 2006). They could 
be summarised as follows:
 ● They work with a coding of the parameter set and 

not the parameters themselves;
 ● They search from a population of points and not a 

single point;
 ● They use information concerning payoff and not de-

rivatives or other auxiliary knowledge;
 ● They use probabilistic transition rules and not deter-

ministic rules.

Descriptive Data Analysis

We seek to determine the optimal weights for the banking 
credit portfolios in Saudi Arabia for a period of 22 years 
(1998-2020) using SAMA (Saudi Arabian Monetary 
Authority) database. Therefore, we will present the 
statistical characteristics of our time series of database 
that have been selected. It includes 11 economic activity 
sectors (agriculture and fishing, manufacturing and 
processing, mining and quarrying, electricity, water, gas 
and health services, building and construction, commerce, 
transport and communications, finance, services, 
miscellaneous, and government and quasi govt.). For 
simplicity, we calculated the following historical returns 
of assets. The portfolio average return and the portfolio 
variance are estimated using these historical data.
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Markowitz in credit current portfolio like value of mean-variance, standard deviation of returns for 

each asset, and the coefficient of correlation between returns. Moreover, we will develop an idea 

about the possibility of the success of the investment diversification process for portfolio 

opitimisation. It is shown in Table 1, 2, and 3. 

 

Table 1: The Mean and Standard Deviation Returns for Each Asset (Million/SAR) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Credit1 Credit2 Credit3 Credit4 Credit5 Credit6 Credit7 Credit8 Credit9 Credit10 Credit11 
Mean 

return ri 
4044,07 41102,84 3654,54 8759,24 27855,54 78659,16 12951,05 17767,12 18638,53 141701,63 19679,13 

St. dev. 125,81 1107,01 141,65 430,94 674,35 2118,81 333,67 889,01 534,50 4475,24 541,09 

Fig. 1: Distribution of Bank Credit Classified By 
Economic Activity (%) 

Fig. 2: Distribution of Assets Return of the 
Banking Loans Portfolio (%) Fig. 1: Distribution of Bank Credit Classified By 

Economic Activity (%)
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current portfolio like value of mean-variance, standard 
deviation of returns for each asset, and the coefficient of 

correlation between returns. Moreover, we will develop an 
idea about the possibility of the success of the investment 
diversification process for portfolio optimization. It is 
shown in Table 1, 2, and 3.
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Table 1: The Mean and Standard Deviation Returns for Each Asset (Million/SAR)

Credit1 Credit2 Credit3 Credit4 Credit5 Credit6 Credit7 Credit8 Credit9 Credit10 Credit11
Mean return ri 4044,07 41102,84 3654,54 8759,24 27855,54 78659,16 12951,05 17767,12 18638,53 141701,63 19679,13
St. dev. 125,81 1107,01 141,65 430,94 674,35 2118,81 333,67 889,01 534,50 4475,24 541,09

Table 2: The Variance-Covariance Matrix
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Table 3: The Correlation Matrix 
 

 
 
 
 
6. Mean-Variance Portfolio Optimisation using GA 
 
 
 
 
 
In this part, the portfolio optimisation calculations are done. Portfolio optimisation was carried out 

with equation 3.1, using genetic algorithm optimisation. In order to solve equation 3.1, we applied 

the GA proposed by Holland in 1975. The GA initially generates a random value of ‘gen’ w within a 

certain interval, which is associated in a ‘chromosome’. This algorithm allows the competition 

between each chromosome, which brings each potential solution to the optimisation problem. A set 

 Credit1 Credit2 Credit3 Credit4 Credit5 Credit6 Credit7 Credit8 Credit9 Credit10 Credit11 
Credit1 1 0,8071 0,6378 0,5955 0,8851 0,9244 0,8473 0,7281 0,8138 0,8938 0,7746 
Credit2 0,8071 1 0,9297 0,8667 0,9305 0,9457 0,8661 0,3184 0,9816 0,9463 0,6492 

Credit3 0,6378 0,9297 1 0,9530 0,7736 0,8048 0,7542 0,1272 0,9272 0,8905 0,4673 
Credit4 0,5955 0,8667 0,9530 1 0,6720 0,7419 0,7558 0,0565 0,8811 0,8801 0,3449 
Credit5 0,8851 0,9305 0,7736 0,6720 1 0,9727 0,7974 0,5739 0,9235 0,8996 0,8592 

Credit6 0,9244 0,9457 0,8048 0,7419 0,9727 1 0,8562 0,5540 0,9385 0,9476 0,8027 
Credit7 0,8473 0,8661 0,7542 0,7558 0,7974 0,8562 1 0,3072 0,8662 0,8861 0,5265 
Credit8 0,7281 0,3184 0,1272 0,0565 0,5739 0,5540 0,3072 1 0,3543 0,4590 0,7590 

Credit9 0,8138 0,9816 0,9272 0,8811 0,9235 0,9385 0,8662 0,3543 1 0,9556 0,6793 
Credit10 0,8938 0,9463 0,8905 0,8801 0,8996 0,9476 0,8861 0,4590 0,9556 1 0,6688 
Credit11 0,7746 0,6492 0,4673 0,3449 0,8592 0,8027 0,5265 0,7590 0,6793 0,6688 1 

Table 3: The Correlation Matrix

Credit1 Credit2 Credit3 Credit4 Credit5 Credit6 Credit7 Credit8 Credit9 Credit10 Credit11
Credit1 1 0,8071 0,6378 0,5955 0,8851 0,9244 0,8473 0,7281 0,8138 0,8938 0,7746

Credit2 0,8071 1 0,9297 0,8667 0,9305 0,9457 0,8661 0,3184 0,9816 0,9463 0,6492
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Mean-Variance Portfolio Optimization 
using GA

In this part, the portfolio optimization calculations 
are done. Portfolio optimization was carried out with 
equation 1, using genetic algorithm optimization. In 
order to solve equation 1, we applied the GA proposed 
by Holland in 1975. The GA initially generates a random 
value of ‘gen’ w within a certain interval, which is 
associated in a ‘chromosome’. This algorithm allows the 
competition between each chromosome, which brings 
each potential solution to the optimization problem. A set 
of chromosomes called ‘population’ are produced; hence, 
an iteration (generation) is performed to determine the 
fittest parameters of the ‘objective function’. In this case, 
equation 1 is the objective function.

The generation process consists of evaluating the ‘fitness 
function’ adapted to create a new population, until the 
optimum chromosomes have been addressed. This 

operation is made by setting the genetic operator; number 
of population and chromosome are 100 and 11 variables, 
number of generation is 200, the crossover and mutation 
rates are set at 0.25.

Since we wanted to maximise the objective function, we 
adopted the ‘roulette-wheel’ selection, where wi is the 
new individual of each w and f is the fitness value for 
each individual; n is the size of population. In this case, 
we applied a random crossover and mutation algorithm, 
which has a probability of 0.25, for each gen in the 
chromosomes to be crossed over or mutated.

The data used for process optimization are the values of 
the mean and variance. They are given in Table 1 and 
Table 2. We defined the fitness function to evaluate the 
right solution as follows.
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In general, the best fitness gives us an idea of the algorithm's performance or of the most optimal 
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solution will have a high value (the equations 3.2 and 3.3 are used to estimate risk-return of loan 

optimal portfolio). 

The results simulation from using MATLAB for each crossover procedure can be seen in Fig. 3 and 
Table 4; it illustrates the functions of genetic algorithm simulation results obtained via crossover 
procedures. 
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In general, the best fitness gives us an idea of the 
algorithm’s performance or of the most optimal solutions. 
So in our case, a good solution will have a low value of 
fitness function, whereas a bad solution will have a high 
value (the equations 2 and 3 are used to estimate risk-
return of loan optimal portfolio).

The results simulation from using MATLAB for each 
crossover procedure can be seen in Fig. 3 and Table 4; it 
illustrates the functions of genetic algorithm simulation 
results obtained via crossover procedures.

Results and Discussions

The performance of different optimization methods 
(Markowitz and GA optimization) are compared, as seen 
in Fig. 3 and Table 4. For the application of the GA, an 
objective function (fitness function) was formulated to 
evaluate the crossover procedure that scored less on the 
fitness scale, and consequently which would lead to the 
optimal portfolio.

The results show that the arithmetic crossover procedure 
gives best results (Best = 1.9899) and the arithmetic 
procedure should lead to the best choice of weights (w1 = 
0.1010%, w2 = 0.1200, w3 = 0.1098%, w4 = 0.0234%, w5 
= 0.1743%, w6 = 0.1099%, w7 =0.0346, w8 = 0.1473%, 
w9 = 0.0497%, w10 = 0.0780%, and w11 = 0.0520%); and 
thus producing the optimal portfolio with a highest return 
of 0.79% and lowest risk of 1.58%.

This time, the genetic algorithm makes progress, but 
because the average distance between individuals is so 
large, the best individuals are far from the optimal solution.

As illustrated in Fig. 3, the GA can converge towards the 
optimal solution in a very short time: 3.3 seconds for the 
single point.

Table 4: A Performance Comparison between 
Markowitz Optimization and GA Optimization

Markowitz 
Optimization

GA 
Optimization

Asset Class Weight (%) Weight (%)
Agriculture and Fishing 0.1020 0.1010
Manufacturing and Processing 0.1100 0.1200
Mining & Quarrying 0.1088 0.1098
Electricity ,Water, Gas and 
Health Services

0.1254 0.0234

Markowitz 
Optimization

GA 
Optimization

Asset Class Weight (%) Weight (%)
Building & Construction 0.0743 0.1743
Commerce 0.1079 0.1099
Transport and Communica-
tions

0.1346 0.0346

Finance 0.0473 0.1473
Services 0.0597 0.0497
Miscellaneous 0.0680 0.0780
Government & Quasi Govt. 0.0620 0.0520
Optimal Portfolio Risk [σP] 
(%)

1.71 1.58

Optimal Portfolio Return [RP] 
(%)

0.091 0.79

The results show that the Markowitz optimization gives 
poorer results (optimal weights w1 = 0.1020%, w2 = 
0.1100%, w3 = 0.1088%, w4 = 0.1254%, w5 = 0.0743%, w6 
= 0.1079%, w7 = 0.1346%, w8 = 0.0473%, w9 = 0.0597%, 
w10 = 0.0680, and w11 = 0.0620%); thus producing the 
optimal portfolio with a lowest return of 0.091% and 
highest risk of 1.71%.

Conclusion

In this paper, we have proved that under conditions of 
growing demand on credit resources in the economics of 
Saudi Arabia, during the period 1998-2020, credit risk 
management system is vital. This period was characterised 
by crisis on all economic activities, like the financial crisis 
of 2008, Greece debt crisis 2011, the oil crisis of 2014, 
and the Covid-19 crisis in 2020. In addition, according 
to the SAMA database, commercial banks of KSA have 
estimated the highest amount of non-performing loans 
(net provisions to capital) in the same period, totalling 
4,13,265.035 million Riyals.

In this context, we propose GA to increase the perform-
ance of lending portfolio optimization; it becomes a new 
approach, and the tool has not only theoretical, but also 
practical importance, to the quality of risk management 
of the credit portfolio.
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