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Abstract

As commercial entities, commercial banks are expected 
to maintain profitability in the face of stiff competition, 
while serving the mandatory government priorities and 
policy commitments, and central bank regulations. The 
performance of commercial banks crucially depends 
on their technical efficiency of realising the full potential 
output, which the banks invariably do not. This paper 
measures the technical efficiency of 94 public, private, 
foreign, and small financial commercial banks in India 
in 2019 using the data envelopment analysis (DEA) 
method; the determinants of technical efficiency are 
analysed by applying the Tobit regression method. 
The estimated technical efficiency scores of public 
sector banks are below average and private banks 
do little better than average, while the technical 
efficiency of foreign banks varies widely. The Tobit 
estimates show that capital adequacy and return on 
assets positively influence technical efficiency, while 
bank size reduces the technical efficiency of the 
banks. The managerial quality, bank profitability, and 
diversification are irrelevant to the technical efficiency 
levels of commercial banks. The results suggest that 
the performance of commercial banks in India may be 
improved by choosing a proper input-output mix and 
an appropriate scale size.
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Introduction

The banking sector is the backbone of the financial sector 
of the economy and the cornerstone for mobilising and 
allocating savings in an economy, thereby providing 
stability to the economy and raising the prospects of 
economic growth (Singh & Fida, 2015). The banks are 
the institutions that channel the funds to businesses 
and households, and therefore are strong determinants 
in the allocation of capital, financial stability, and the 
competitiveness and development of manufacturing and 
services (Beck et al., 2003). The banking sector consists 
broadly of public sector, private, and foreign sector 
banks. The public sector banks in India are the dominant 
sector in terms of lending and borrowing, with widely 
spread branches that help greatly in pooling resources and 
revenue generation for credit creation. Given the important 
place occupied by the banking sector in the economy, its 
health and performance are vital for a growing economy. 
An efficient banking system is crucial to strengthen 
productivity, profitability, safety, and soundness of banks, 
as well as innovations and improvements to channel 
capital buffers and absorb risk. Measuring efficiency 
is directly related to a bank management’s success in 
controlling costs and generating revenue. However, the 
banking industry has been facing competitive pressure 
worldwide as the world financial structure has changed 
rapidly due to the deregulation of financial services and 
increasing use of information technology (Beck, 2006). 
In this context of increasing competition in the financial 
markets, it is imperative to understand and evaluate the 
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performance of the banks in general, and the technical 
efficiency of these financial institutions in particular.

In economic theory, any business entity is viewed as 
producing units, producing one or more outputs using 
multiple inputs. Economic theory posits that the decision-
making units (DMUs) are successful optimisers, aiming 
maximum profits by efficiently utilising the inputs to 
achieve maximum possible output to be able to survive 
the competition in the market. Technical efficiency is 
the cornerstone of economic profitability, as it measures 
the ability of the firm to produce maximal outputs from 
a given set of inputs. Hence, it affects the competitive 
position of a firm directly. If there exists any inefficiency, 
either in the inputs or in the output, or the unit uses a 
lesser technology, then the unit cannot sell its output 
at a competitive price in the market as other units and 
cannot reward the inputs their value of the marginal 
product. Therefore, the unit has to go out of the market 
due to its inefficiency. However, in practice, the inputs 
are not efficiently utilised and production entities do not 
always realise their potential output due to observed and 
unobserved factors behind the production environment.  
In reality, no two producing units will have the same 
quality inputs and accordingly, the output will not be the 
same for any two units in the same business using the same 
quantity of inputs. Therefore, units may be inefficient 
in realising their full potential, and inefficiency arises 
when firms produce output that is below the production 
potential, or technically, their frontiers. Technically stated, 
the production frontier is the locus of the technically 
efficient input-output combinations, wherein each point 
of the frontier shows how productive a business can be 
given the fewest inputs, or resources, necessary to do the 
job. Producing units that are on or close to this frontier is 
said to be technically efficient in that they use their inputs 
efficiently to realise the full potential in the inputs.

Technical efficiency relates to how much output can 
be obtained from a given input, such as a worker or a 
machine, or a specific combination of inputs. Maximum 
technical efficiency occurs when output is maximised 
from a given quantity of inputs. Technical efficiency is the 
ratio of actual output to potential output (Farrell, 1957). 
Suppose that a firm has a production plan (y0, x0), where 
the first argument is the set of outputs and the second is 
the set of inputs. Given the production function f(.), the 
firm is technically efficient if y0 = f(x0) and technically 

inefficient if y0 < f(x0). Thus, technical efficiency explains 
their ability to operate close to, or on the boundary of their 
production set. Hence, the technical efficiency is measured 
by the ratio 0 ≤ [y0/f(x0)] ≤ 1, i.e. technical efficiency 
lies between 0 and 1. Therefore, technical inefficiency 
is measured as (1−TE). However, the measurement of 
technical efficiency requires estimation of the production 
frontier or the potential output, the maximum output from 
an input mix. Since the potential output is not observed 
directly like the actual output, it has to be estimated.

There are 2 common approaches to measure the 
efficiency of decision-making units, the non-parametric 
(mathematical) and parametric (econometric) techniques 
(Coelli et al., 1998). The popular parametric technique is 
the Stochastic Frontier Approach (SFA) (Aigner, Lovell 
and Schmidt, 1977; Meeusen & Broeck, 1977), while 
that of non-parametric is the Data Envelopment Analysis 
(DEA) (Farrell, 1957; Aigner & Chu, 1968; Charnes et 
al., 1978; Timmer, 1971). While the DEA method uses 
the linear programming approach to calculate the efficient 
deterministic frontier or potential output, the SFA methods 
use econometric functions, modelling inefficiency as 
an additional stochastic term. Under both approaches, 
the technical efficiency of DMUs is estimated in two 
ways, input-oriented or output-oriented measurement. 
The input-oriented technical efficiency approach aims 
at reducing the input amount at a given level of output, 
and the output-oriented approach tries to maximise the 
output level at given levels of inputs. The input-oriented 
approach is widely used to analyse the technical efficiency 
of service-oriented entities like the banks, as the output 
is less well defined and measuring service outputs is 
complex. Practically, one output or an index of multiple 
outputs is used. The technical inefficiency of each DMU 
is calculated taking the highly technically efficient output 
as the potential output. Under the assumption of efficient 
utilisation of inputs, the potential output-actual output 
gap is attributed to the inefficient use of the inputs, and 
then the determinants of this technical inefficiency are 
analysed using a set of covariates. The DEA method uses 
the linear programming approach to calculate the efficient 
deterministic frontier or potential output.

Generally, the performance of banks is measured either 
by using financial ratios or measuring its efficiency. This 
paper attempts to measure the efficiency performance of 
the banking sector in India and analyses the determinants 
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of the inefficiency of commercial banks in India. The focus 
is on the estimation of the technical efficiency score of 
each bank in India. The main objectives of this paper are to 
estimate the technical efficiency of commercial banks and 
to identify the determinants of their technical efficiency. 
This paper uses secondary data obtained from the Reserve 
Bank of India. A 2 step estimation approach is followed in 
this paper. In the 1st step, the technical efficiency score of 
the commercial banks in India is estimated using the DEA 
approach. In the 2nd step, the determinants of the technical 
efficiency of commercial banks in India are analysed by 
applying the Tobit regression method.

Review of Literature

The application of DEA in measuring bank efficiency 
starts with the work of Sherman and Gold (1985), who 
used DEA to investigate the efficiency in the operation of 
bank branches. Early attempts to estimate the efficiency 
scores of the financial institutions are by Berger and 
Humphrey (1997) and Berger et al. (1997). They find 
that various efficiency methods do not necessarily 
yield consistent results and derive the implications of  
efficiency results for financial institutions in the areas of 
government policy, research, and managerial performance.

Assaf et al. (2011) examined the technical efficiency of 
Saudi banks using a panel data set of 81 observations 
over the period 1999-2007, applying the Wilson 2 stage 
DEA bootstrap procedure. At the 1st stage, the output-
oriented DEA model is applied to estimate the relative 
efficiency scores of Saudi banks, and at the 2nd stage, the 
relationship between the efficiency scores and some key 
environmental variables is estimated using the truncated 
regression model. Following Sealey and Lindley (1977), 
the intermediation approach is used, with 4 outputs that 
cover both off-balance sheet activities, viz. total customer 
loans, securities, and interbank loans, and 3 inputs, viz. 
total employees, fixed assets, and total deposits. The 
estimates show that the average efficiency score of Saudi 
banks is 88.84% and has been increasing since 1999. The 
findings suggest that on average Saudi banks are nearly 
9.79% away from their frontier maximum efficiency 
scores. In the 2nd stage bootstrap procedure, the results 
reveal that the Saudi banks’ technical efficiency increases 
with the assets of banks, implying that large banks 
contribute to higher technical efficiency. Further, the net 

profit margin has a positive and significant impact on 
the efficiency of banks, and a negative relationship with 
efficiency for purely domestic banks and foreign banks.

San et al. (2011) analysed the comparative efficiency of 
foreign and domestic banks in Malaysia using a panel 
data set of 9 domestic banks and 12 foreign banks over 
the period 2002-2009, applying the non-parametric DEA 
method. The intermediation approach is used to define 
the inputs and outputs in estimating the efficiency scores. 
Surprisingly, the findings are inconsistent with the findings 
of the literature, where the foreign banks outperform 
their domestic peers in terms of efficiency. Conversely, 
domestic banks have a higher efficiency level than foreign 
banks, implying that domestic banks are relatively more 
managerially efficient in controlling their costs. The  
2nd stage Tobit estimates suggest that capital strength, loan 
quality, expenses, and asset size significantly influence 
the pure technical efficiency of banks in Malaysia.

In the Indian context, Bhattacharya et al. (1997) studied 
the efficiency of Indian commercial banks over a 5 year 
period, 1986-1991, using data of 70 banks. A 2 step 
estimation procedure is followed; 1st, the DEA technique 
to measure the technical efficiency of banks, and then the 
stochastic frontier approach is used to explain the bank 
efficiency variations using a set of variables to account for 
time, ownership, and regulatory policy. The results show 
that the public sector banks are more efficient than foreign 
banks, which in turn are marginally more efficient than 
private sector banks. About 78% of banks operate with 
decreasing returns to scale, while 16% show increasing 
returns to scale. The study also observed that public 
sector bank efficiency declined over time, whereas that 
of foreign banks improved over time. The performance of 
private banks remained almost unchanged.

Ray and Ram Mohan (2004) compare the performance 
of public, private, and foreign banks using physical 
quantities of inputs and outputs, and evaluate the revenue 
maximisation efficiency of Indian banks during 1992-
2001. The findings of the study show that the public 
sector banks perform significantly better than private 
sector banks, but not differently from foreign banks; 
there is convergence in performance between public and 
private sector banks with respect to technical efficiency, 
but not with respect to allocative efficiency in the post-
reform era.
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Ataullah and Le (2006) investigated the effect of  
economic reforms, viz. fiscal, financial, and private 
investment liberalisation reforms on the efficiency of 
Indian banks for the period 1992-1998, applying the 
DEA, OLS, and GMM estimations. The results show an 
improvement in the efficiency of banks after the economic 
reforms, especially that of foreign banks. The study finds a 
positive relationship between the level of competition and 
bank efficiency, and a negative relationship between the 
presence of foreign banks and bank efficiency, attributable 
to a short-run increase in costs due to the introduction of 
new banking technology by foreign banks. The study also 
finds a negative effect of fiscal deficits on bank efficiency. 
The results further suggest that the gap between the 
efficiency of public sector banks and private sector banks 
declines in the post-economic reforms era.

Kumar and Gulati (2008) analyse technical efficiency 
and scale efficiency of the Indian public sector banking 
industry for 1992-2005 using the input-oriented DEA 
approach, a method that minimises inputs while keeping 
output constant. The paper uses the logistic regression 
method to estimate the effect of a set of environment 
variables on the overall technical efficiency of public 
sector banks. The output measure is the number of deposits 
and loan accounts, and the input vector included physical 
capital measured by fixed assets, wages of labour, and 
loanable funds that include borrowings and deposits. The 
estimated technical efficiency of public sector banks is 
above 75%, except Bank of India with 63.2%, while most 
of the state banks show 100% technical efficiency.

Dimpy and Gulati (2010) examined the significance of 
the effect of ownership on the efficiency of 27 public 
sector banks during the financial years 2005-2006 and 
2006-2007, applying the DEA approach. The results 
show that the new private sector banks dominate the 
formation of the efficient frontier of the Indian domestic 
banking industry. The overall technical inefficiency stems 
primarily from managerial inefficiency and not from 
scale inefficiency. The study finds insignificant efficiency 
differences between the public and private sector banks. 
The study concludes that ownership does not matter in the 
Indian domestic banking industry.

Dwivedi and Charyulu (2012) seek to determine the 
impact of various market and regulatory initiatives on 

efficiency improvements of Indian banks in the post-
reform era. The input variables of the study include the 
number of bank branches, total operating expenses, and 
deposits, while the output of banks is advances and non-
interest income. The DEA-Constant Returns to Scale 
model estimates show mean technical efficiency of 95.6% 
in 2005, and an improved 97.9% in 2010. It is observed 
that the national banks, new private banks, and foreign 
banks have high efficiency over the period.

Sharma, Sharma and Barua (2012) studied the 
determinants of the efficiency of commercial banks in 
India during the period 2000-2010, with a sample of 64 
banks, using the DEA approach. The results reveal that 
the age and profitability of the banks have a positive 
impact, while bank diversification has a negative impact 
on the efficiency levels of the banks in India.

Lakshmanasamy and Shanmugam (2001; 2003) 
estim-ated the alternative methodologies of frontier  
techniques to measure the technical efficiency of 
single as well multi-outputs of 58 commercial banks in 
India for 1999. The estimated models include the non- 
parametric DEA method, parametric stochastic frontier, 
random coefficients, and stochastic ray frontier  
approaches. 2 outputs, interest margin, and other 
non-interest income, and 3 inputs, namely deposits, 
borrowings, and labour employed, are considered in 
the study. The study reveals that the mean technical 
efficiency estimate by DEA is 65%, RCA 51.71%,  
SFA ranges from 52 to 81%, and RAY 81.32%. The 
estimated ray coefficients suggest that the elasticity of 
Euclidean output with respect to deposits is 89.5%, labour 
0.5%, and borrowing 0.046%. The inclusion of non-
interest income as a 2nd output of banks adds about 2% 
efficiency in ray estimates.

Applying the stochastic frontier production function 
approach, Shanmugam and Das (2004) analysed the 
efficiency of 94 commercial banks in the four different 
ownership groups in India during the period 1992-
1999. The estimated results indicate that the efficiency 
score of private banks is highly influenced by the size 
of investments. The state bank group (48.7-51.4%) and 
foreign banks (38.7-41.3%) are more efficient than other 
public sector and private sector banks. Still, there exists 
larger gaps between the actual and potential performances 
of all groups of banks in India.
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Lakshmanasamy (2018) estimated bank technical 
efficiency using the multiple input-multiple output mix 
technology approach, applying the stochastic ray frontier 
function method, and the determinants of the level of 
technical efficiency of 47 commercial banks in India for 
the period 2014-2017, were observed. The maximum 
likelihood estimates of the ray frontier function show 
that the mean technical efficiency of Indian scheduled 
commercial banks is, on average, 33%, with a range for 
individual banks fluctuating between 23% and 77%. The 
high technical inefficiency of banks is attributed to the 
high non-performing assets, priority sector lending, and 
the age of the banks.

Data and Methodology

This paper uses cross-sectional data of the banking 
sector in India for the year 2019 collected from the 
Reserve Bank of India, consisting of 94 observations. 
The variables used in this study are interest income, non-
interest income, advances, interest expenses, non-interest 
expenses, deposits, capital, bank size, and return on asset.

Data Envelopment Analysis (DEA)

In the empirical analysis, this paper follows the output-
oriented data envelopment analysis method. The DEA 
calculates efficiency by the comparison of aggregate 
input/output ratios of all units having piecewise frontier 
surface constructed by the linear programming method. 
The efficiency or inefficiency score of each bank is derived 
from the gap to this frontier surface. The efficiency scores 
derived from the DEA method lie between 0 and 1, as 
they are calculated as the ratio between the actual and 
potential or the technically efficient output. Farrell (1957) 
proposed the deterministic frontier model (for n factors). 
The method consists of plotting input/output ratios 
of firms in a space of a suitable number of dimensions 
forming the convex closure of the set of points. Taking 
the appropriate part of the surface of this convex closure 
provides an estimate of the efficient production function.

The convex hull method may be characterised by a 
sequence of a linear programming (LP) problem. Let 
d(x,y;i=1,…,n;j=1,…,m) = (x, y) be the input and output 
data set, where xij is the input j for the ith bank and yi is 
the single output of each bank i. The efficiency frontier 

is then specified by the optimal solution of the following 
LP model:
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Following Farrell’s initiatives, Aigner and Chu (1968) 
proposed a procedure for computing a parametric convex 
hull of the observed input and output ratios using the 
Cobb-Douglas production frontier function as:
 yi = y*

i exp (−ui)  (2)

Where, yi is the actual output and yi
* is the potential 

(frontier) output, and ui  is a non-negative random variable 
associated with firm specific factors, which contribute to 
the ith firm not attaining maximum efficiency of production. 
The presence of the non-negative random variable ui in the 
model is associated with the technical inefficiency of the 
firm and implies that the value of the random variable  lies 
between zero and one. Thus, it follows that the possible 
production y is bounded above by the non-stochastic, i.e. 
deterministic quantity, yi

*. Hence, the model is referred to 
as the deterministic frontier function. Taking logarithms 
on both sides of the equation yields:

 lnyi = lny*
i  − ui  (3)

Given ui = y*
i  − yi, equation (3) can be written as:

 yi = y*
i  − ui (4)

For an efficient firm, u = 0 or y* = y. For an inefficient 
firm, u > 0 or y < y*. Imposing a minimising constraint on 
the sum of the error terms, ∑ui will place the production 
surface to lie as close as possible to the actual set of output 
points. Hence, the problem can be stated as:
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For computational purposes, it is desirable to divide 
equation (6) by the number of observations in the sample. 
Thus, the arithmetic mean of observations of the ith input 
is used instead of the input:

 

 

 
 

For computational purposes, it is desirable to divide equation (6) by the number of 
observations in the sample. Thus, the arithmetic mean of observations of the ith input is used 
instead of the input: 

∑ 𝑦𝑦𝑖𝑖
∗

𝑛𝑛 = ∑ 𝛽𝛽𝑗𝑗�̅�𝑥𝑗𝑗           (7) 
Where, βj are the parameters to be estimated. Aigner and Chu (1968) suggest that βj can be 
estimated by using the linear (or quadratic) programming method. The vector yi/yi* is the 
index of technical efficiency, with a separate measure for each firm i. 

Following Timmer (1971), the deterministic frontier function defined above can also be 
transformed into a probabilistic frontier function. According to him, the initial linear 
programming exercise is solved and β̂i values are noted. The constraints or observations 
representing the efficient firms, i.e., extreme observations or outliers are then removed from 
the initial linear programming exercise, reducing it for the second linear programming 
exercise. The procedure continues until the estimated parameters are stabilised. 

Thus, the efficiency surface may be viewed as a set of efficiency facets, one facet for 
each k, where k = 1, …, j is one of the n units. Hence, an independent measure of technical 
efficiency can be obtained for each sample observation. Thus, TE can be measured as: 
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Therefore, technical inefficiency is measured as (1 − TE). The estimates of input-specific 
efficiency measures for individual firms can also be obtained as the ratio of actual response 
coefficients to the frontier response coefficients. In percentage terms, the efficiency of using 
jth input by the ith firm (TEij) is given as: 
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Tobit Regression Method 
As the estimated efficiency scores are ratios of actual output to potential output that lie 
between 0 and 1, the censored regression method is the appropriate estimation procedure. 
Hence, the Tobit regression method is used to estimate the effects of the determinants on the 
bank technical efficiency. As the potential output is unknown, the index or latent output-input 
regression function is specified as: 

𝑦𝑦∗ = 𝛽𝛽𝑥𝑥 + 𝑢𝑢         (10) 
The y∗ is a latent variable that is censored for values lesser than some threshold, say c. The 
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Normally, 𝑇𝑇[ 𝑦𝑦 ∣∣ 𝑥𝑥 ] = 0. With censoring, 𝑇𝑇[ 𝑦𝑦 ∣∣ 𝑥𝑥 ] ≠ 0, and OLS estimation is biased. 
Defining the density function for u condition on y ≤ c: 

𝜙𝜙 = 𝜙𝜙(u ∣ y ≤ c) = 𝜙𝜙(u ∣ u ≤ c − β𝑥𝑥) = 𝜙𝜙(𝑢𝑢)
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Thus, 𝑇𝑇[ 𝑦𝑦 ∣∣ 𝑥𝑥 ] = Φ (𝛽𝛽𝑥𝑥
σ ) (𝛽𝛽𝑥𝑥 + 𝜎𝜎𝜎𝜎)                   (14) 

Where, 𝜎𝜎 = 𝜙𝜙(𝛽𝛽𝑥𝑥/𝜎𝜎)/Φ(𝛽𝛽𝑥𝑥/𝜎𝜎), ϕ and Φ denote density and cumulative distribution 
functions of u. 

Assuming the normal distribution of the error term u, the likelihood function for the 
maximum likelihood estimation of the censored regression model is specified as: 

𝐿𝐿 = ∏ [1
𝜎𝜎 𝜙𝜙 (𝑦𝑦−𝜇𝜇
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Therefore, technical inefficiency is measured as (1 – TE). 
The estimates of input-specific efficiency measures for 
individual firms can also be obtained as the ratio of actual 
response coefficients to the frontier response coefficients. 
In percentage terms, the efficiency of using jth input by the 
ith firm (TEij) is given as:
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As the estimated efficiency scores are ratios of actual 
output to potential output that lie between 0 and 1, the 
censored regression method is the appropriate estimation 
procedure. Hence, the Tobit regression method is used 
to estimate the effects of the determinants on the bank 
technical efficiency. As the potential output is unknown, 
the index or latent output-input regression function is 
specified as:
 y* = bx+ u  (10)

The y* is a latent variable that is censored for values lesser 
than some threshold, say c. The actual or observed output 
is specified by a measurement equation:
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Tobit Regression Method 
As the estimated efficiency scores are ratios of actual output to potential output that lie 
between 0 and 1, the censored regression method is the appropriate estimation procedure. 
Hence, the Tobit regression method is used to estimate the effects of the determinants on the 
bank technical efficiency. As the potential output is unknown, the index or latent output-input 
regression function is specified as: 

𝑦𝑦∗ = 𝛽𝛽𝑥𝑥 + 𝑢𝑢         (10) 
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actual or observed output is specified by a measurement equation: 
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The log-likelihood function for the Tobit model is specified as: 
𝑙𝑙𝑙𝑙𝐿𝐿 = ∑ {𝑐𝑐 [−𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑙𝑙𝑙𝑙𝜙𝜙 (𝑦𝑦−𝛽𝛽𝛽𝛽
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In the log-likelihood function, the first part corresponds to the classical regression for the 
uncensored observations and the second part is relevant for the censored observation. The 
estimated Tobit equation is specified as: 

�̂�𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙 + 𝛽𝛽2𝐵𝐵𝐶𝐶𝑙𝑙𝐵𝐵 𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠 + 𝛽𝛽3𝑅𝑅𝑠𝑠𝐶𝐶𝑅𝑅𝑅𝑅𝑙𝑙 𝑜𝑜𝑙𝑙 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠 + 𝜀𝜀           (18) 
Where, ŷ is the estimated technical efficiency score of banks. 

Empirical Analysis 
Table 1 presents the description and summary statistics of the variables. The average interest 
income of commercial banks in India was ₹12135.39 crores in 2019 and the average non-
interest income was ₹1946.31 crores. The average size of advance is ₹103345.4 crores, the 
average interest expense is ₹7562.655 crores, and non-interest expenses is ₹3270.818 
crores. The average bank deposit is ₹137099 crores. The log mean of capital is 6.583 and the 
log average of bank size is 10.081. The log average return on assets is 0.257. 

Table 1: Descriptive Statistics of Variables 
 

Variable Description Mean 
Interest 
income 

Bank revenue earned through interest on lending 
(₹crores/pa) 

12135.39 
(29179.17) 

Non-interest 
income 

Bank revenues from other banking services like 
commission, brokerage, and so on (₹crores/pa) 

1946.31 
(4703.66) 

Advances Bank loans, the extension of money from a bank to another 
party with the agreement that the money will be repaid 
(₹crores/pa) 

103345.40 
(260525.60) 

Interest 
expense 

Bank cost of borrowed funds, the non-operating expense 
derived from such lending arrangements as lines of credit, 
loans, and bonds (₹crores/pa) 

7562.65 
(18253.56) 

Non-interest 
expense 

Bank operational expenses, other than interest payments on 
deposits and bonds, such as salaries and bonuses to staff, 
marketing, and equipment expenses (₹crores/pa) 

3270.82 
(8135.98) 

Deposits Bank deposits, the liability rather than the actual funds that 
have been deposited (₹crores/pa) 

137099.01 
(341189.60) 

ln(Capital) Bank capital, the difference between the bank’s assets and 
its liabilities, representing the net worth of the bank or its 
equity value to investors; the asset portion of the bank’s 
capital includes cash, government securities, and interest-
earning loans 

6.583 
(1.533) 

 

ln(Bank size) Total market value of the securities in a fund, the assets 
under management 

10.081 
(2.45) 

Return on 
asset 

Bank profitability relative to its total assets 0.257 
(2.524) 

Note: Standard deviations in parentheses. 

The DEA estimates of the technical efficiency scores of the public sector, private 
sector and foreign commercial banks, and small finance banks are presented in Table 2. The 
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Empirical Analysis 
Table 1 presents the description and summary statistics of the variables. The average interest 
income of commercial banks in India was ₹12135.39 crores in 2019 and the average non-
interest income was ₹1946.31 crores. The average size of advance is ₹103345.4 crores, the 
average interest expense is ₹7562.655 crores, and non-interest expenses is ₹3270.818 
crores. The average bank deposit is ₹137099 crores. The log mean of capital is 6.583 and the 
log average of bank size is 10.081. The log average return on assets is 0.257. 

Table 1: Descriptive Statistics of Variables 
 

Variable Description Mean 
Interest 
income 

Bank revenue earned through interest on lending 
(₹crores/pa) 

12135.39 
(29179.17) 

Non-interest 
income 

Bank revenues from other banking services like 
commission, brokerage, and so on (₹crores/pa) 

1946.31 
(4703.66) 

Advances Bank loans, the extension of money from a bank to another 
party with the agreement that the money will be repaid 
(₹crores/pa) 

103345.40 
(260525.60) 

Interest 
expense 

Bank cost of borrowed funds, the non-operating expense 
derived from such lending arrangements as lines of credit, 
loans, and bonds (₹crores/pa) 

7562.65 
(18253.56) 

Non-interest 
expense 

Bank operational expenses, other than interest payments on 
deposits and bonds, such as salaries and bonuses to staff, 
marketing, and equipment expenses (₹crores/pa) 

3270.82 
(8135.98) 

Deposits Bank deposits, the liability rather than the actual funds that 
have been deposited (₹crores/pa) 

137099.01 
(341189.60) 

ln(Capital) Bank capital, the difference between the bank’s assets and 
its liabilities, representing the net worth of the bank or its 
equity value to investors; the asset portion of the bank’s 
capital includes cash, government securities, and interest-
earning loans 

6.583 
(1.533) 

 

ln(Bank size) Total market value of the securities in a fund, the assets 
under management 

10.081 
(2.45) 

Return on 
asset 

Bank profitability relative to its total assets 0.257 
(2.524) 

Note: Standard deviations in parentheses. 

The DEA estimates of the technical efficiency scores of the public sector, private 
sector and foreign commercial banks, and small finance banks are presented in Table 2. The 

 is the estimated technical efficiency score of 
banks.

Empirical Analysis

Table 1 presents the description and summary statistics of 
the variables. The average interest income of commercial 
banks in India was `12135.39 crores in 2019 and the 
average non-interest income was `1946.31 crores. The 
average size of advance is `103345.4 crores, the average 
interest expense is `7562.655 crores, and non-interest 
expenses is `3270.818 crores. The average bank deposit 
is `137099 crores. The log mean of capital is 6.583 and 
the log average of bank size is 10.081. The log average 
return on assets is 0.257.

Table 1: Descriptive Statistics of Variables

Variable Description Mean
Interest 
income

Bank revenue earned through interest 
on lending (` crores/pa)

12135.39
(29179.17)

Non-inter-
est income

Bank revenues from other banking ser-
vices like commission, brokerage, and 
so on (` crores/pa)

1946.31
(4703.66)

Advances Bank loans, the extension of money 
from a bank to another party with the 
agreement that the money will be re-
paid (` crores/pa)

103345.40
(260525.60)

Interest 
expense

Bank cost of borrowed funds, the non-
operating expense derived from such 
lending arrangements as lines of credit, 
loans, and bonds (` crores/pa)

7562.65
(18253.56)

Non-
interest 
expense

Bank operational expenses, other than 
interest payments on deposits and 
bonds, such as salaries and bonuses 
to staff, marketing, and equipment ex-
penses (` crores/pa)

3270.82
(8135.98)

Variable Description Mean
Deposits Bank deposits, the liability rather than 

the actual funds that have been depos-
ited (` crores/pa)

137099.01
(341189.60)

ln(Capital) Bank capital, the difference between 
the bank’s assets and its liabilities, rep-
resenting the net worth of the bank or 
its equity value to investors; the asset 
portion of the bank’s capital includes 
cash, government securities, and inter-
est-earning loans

6.583
(1.533)

ln(Bank 
size)

Total market value of the securities in a 
fund, the assets under management

10.081
(2.45)

Return on 
asset

Bank profitability relative to its total 
assets

0.257
(2.524)

Note: Standard deviations in parentheses.

The DEA estimates of the technical efficiency scores of 
the public sector, private sector and foreign commercial 
banks, and small finance banks are presented in Table 
2. The estimated efficiency scores show that the public 
sector banks have low technical efficiency scores in the 
year 2019, hovering around 41% to 50% of technical 
efficiency. Among the public sector banks, Andhra 
Bank has the highest efficiency score of 49.5%, while 
the United Bank of India has the lowest efficiency score 
of 37%. The efficiency score of private sector banks, 
though high relative to public sector banks, varies 
substantially from 42% to 76% in 2019. The Bandhan 
Bank has a high efficiency of 75.7%, while Catholic 
Syrian Bank has a lower level of efficiency, with a score 
of 42%. Comparatively, foreign banks performed both 
efficiently and inefficiently in India in 2019. The Abu 
Dhabi Commercial Bank, National Australia Bank and 
the Royal Bank of Scotland have a perfect efficiency 
score and are fully efficient. The Bank of Ceylon has  
achieved a 97% efficiency level, followed by the 
Industrial Bank of Korea, with 92% efficiency. The JSC  
VTB Bank is the most inefficient foreign bank, while 
Sonali Bank, SBM Bank (India), and DBS Bank  
India had less than 20% technical efficiency in 2019. 
The performance of the small finance banks is slightly  
better. The Suryoday Small Finance Bank has 
achieved the highest efficiency score of 77%, while the 
Capital Small Finance Bank has the lowest efficiency  
score of 45%.
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Table 2: DEA Estimates of Technical Efficiency of Commercial Banks in India

Bank Technical 
Efficiency

Bank Technical 
Efficiency

Public Sector Banks
Allahabad Bank 0.448 (2.69) Indian Overseas Bank 0.444 (2.66)
Andhra Bank 0.495 (2.97) Oriental Bank of Commerce 0.443 (2.66)
Bank of Baroda 0.474 (2.84) Punjab and Sind Bank 0.466 (2.79)
Bank of India 0.449 (2.69) Punjab National Bank 0456 (2.73)
Bank of Maharashtra 0.443 (2.658) State Bank of India 0.461 (2.77)
Canara Bank 0.454 (2.72) Syndicate Bank 0.446 (2.68)
Central Bank of India 0.432 (2.59) UCO Bank 0.441 (2.64)
Corporation Bank 0.482 (2.89) Union Bank of India 0.463 (2.78)
Dena Bank 0.411 (2.46) United Bank of India 0.370 (2.22)
Indian Bank 0.479 (2.87) Vijaya Bank 0.464 (2.87)
Private Sector Banks
Axis Bank 0.503 (3.01) Jammu & Kashmir Bank 0.479 (2.87)
Bandhan Bank 0.757 (4.54) Karnataka Bank 0.467 (2.80)
Catholic Syrian Bank 0.422 (2.53) Karur Vysya Bank 0.506 (3.03)
City Union Bank 0.533 (3.20) Kotak Mahindra Bank 0.531 (3.19)
DCB Bank 0.509 (3.06) Lakshmi Vilas Bank 0.434 (2.60)
Federal Bank 0.479 (2.88) Nainital Bank 0.499 (2.94)
HDFC Bank 0.564 (3.38) RBL Bank 0.504 (3.02)
ICICI Bank 0.510 (3.06) South Indian Bank 0.465 (2.79)
IDBI Bank 0.472 (2.83) Tamilnad Mercantile Bank 0.502 (3.01)
IDFC First Bank 0.451 (2.70) Dhanlaxmi Bank 0.466 (2.79)
IndusInd Bank 0.525 (3.15) Yes Bank 0.551 (3.30)
Foreign Banks
AB Bank 0.218 (1.31) Industrial Bank of Korea 0.922 (5.53)
Abu Dhabi Commercial Bank 0.452 (2.71) JP Morgan Chase Bank National Association 0.712 (4.31)
American Express Banking Corp. 0.196 (1.17) JSC VTB Bank 0.005 (0.003)
Australia & New Zealand Banking Group 0.4744 (2.84) KEB Hana Bank 0.614 (3.69)
Bank of America 0.582 (2.84) Krung Thai Bank Public Company 0.551 (3.31)
Bank of Bahrain & Kuwait 0.479 (2.87) Mashreq Bank 0.516 (3.10)
Bank of Ceylon 0.969 (5.81) Mizuho Bank 0.646 (3.87)
Bank of Nova Scotia 0.519 (3.11) Mufg Bank 0.521 (3.13)
Barclays Bank 0.638 (3.83) National Australia Bank 1.000 (6.00)
BNP Paribas 0.548 (3.29) PT Bank Maybank Indonesia 0.448 (2.69)
Citibank N.A 0.565 (3.39) Qatar National Bank 0.581 (3.48)
Cooperatieve Rabobank 0.473 (2.84) SBER Bank 0.466 (2.80)
Credit Agricole Corporate and Investment Bank 0.602 (3.61) SBM Bank (India) 0.176 (1.06)
Credit Suisse 0.819 (4.91) Shinhan Bank 0.495 (2.97)
CTBC Bank Co. 0.475 (4.91) Societe Generale 0.496 (2.98)
DBS Bank India 0.101 (0.61) Sonali Bank 0.200 (1.20)
Deutsche Bank 0.552 (3.31) Standard Chartered Bank 0.538 (3.23)
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The Tobit estimates of the determinants of technical 
efficiency of commercial banks in India in 2019 are 
presented in Table 3. The results show that all the 
independent variables are statistically significant at 5% 
in all the specifications except profitability and bank 
diversification. The variable return on assets has the 
highest positive effect on bank efficiency, contributing 
about 38% to the technical efficiency of the bank.  
Similarly, an increase in bank capital increases bank 
efficiency on average by 30%. However, bank size 
significantly reduces the efficiency of commercial 
banks by 20%, indicating that the larger the bank size, 
more the inefficiency of the bank. Bank management 
quality, though significantly positive, has a negligible 
contribution to the efficiency of commercial banks. 
The variables profitability and bank diversification are 
negatively related to technical efficiency, but statistically 
insignificant, and hence have no effect on the technical 
efficiency of commercial banks in India in 2019.

Table 3: Tobit Regression Estimates of Technical 
Efficiency of Commercial Banks

Dependent variable: Technical efficiency score

Variable Speci.1 Speci.2 Speci.3 Speci.4
ln(Capital) 0.285*

(3.42)
0.298*
(3.31)

0.313*
(3.40)

0.304*
(3.26)

ln(Bank 
size)

−0.170*
(2.97)

−0.197*
(2.84)

−0.214*
(2.73)

−0.206**
(2.53)

Return on 
asset

0.464*
(4.80)

0.465*
(4.83)

0.385*
(3.74)

0.374*
(3.59)

Variable Speci.1 Speci.2 Speci.3 Speci.4
Manage-
ment quality

- 2.92**
(0.72)

0.0001**
(1.72)

0.0003**
(1.38)

Profitability - - −0.00006
(1.71)

−0.0001
(1.60)

Bank diver-
sification

- - - −0.0002
(1.05)

Constant 2.398*
(3.67)

2.537*
(3.75)

2.699*
(3.83)

2.713*
(3.82)

Note: Absolute t-values in parentheses. *,** significant at 1, 5% levels.

Conclusion

This paper examines the performance of 94 commercial 
banks in India in 2019, in terms of technical efficiency, 
employing the non-parametric data envelopment analysis 
technique and the determinants of technical efficiency 
using the Tobit regression method. The results of the 
DEA indicate that the technical efficiency score of the 
performance of the private sector and foreign banks are 
relatively higher than that of the public sector banks. The 
estimated efficiency scores of public sector banks are  
below average, Andhra Bank being technically more 
efficient and the United Bank of India being the least 
efficient commercial bank. Among the private sector 
banks, the Bandhan Bank is the most efficient, while 
Catholic Syrian Bank is the least efficient bank. In the 
foreign banks, Abu Dhabi Commercial Bank, National 
Australia Bank, and the Royal Bank of Scotland are 
fully efficient, whereas the JSC VTB Bank is the most 
inefficient foreign bank. The efficiency scores of the 

Bank Technical 
Efficiency

Bank Technical 
Efficiency

Doha Bank 0.381 (2.29) Sumitomo Mitsui Banking Corporation 0.577 (3.46)
Emirates NBD Bank 0.534 (3.20) Royal Bank of Scotland 1.000 (6.00)
First Abu Dhabi Bank 1.000 (6.00) United Overseas Bank 0.771 (4.62)
FirstRand Bank Ltd. 0.477 (2.86) Westpac Banking Corporation 0.719 (4.31)
Hongkong and Shanghai Banking Corpn. 0.558 (3.35) Woori Bank 0.459 (2.75)
Industrial and Commercial Bank of China 0.595 (3.57)
Small Finance Banks
AU Small Finance Bank 0.556 (3.39) Suryoday Small Finance Bank 0.774 (4.64)
Capital Small Finance Bank 0.459 (2.75) Ujjivan Small Finance Bank 0.595 (3.57)
Equitas Small Finance Bank 0.596 (3.58) Utkarsh Small Finance Bank 0.671 (4.03)
ESAF Small Finance Bank 0.625 (3.75)

Note: Standard deviations in parentheses.
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public sector banks are below average. It is reasonably 
understandable that the technical efficiency in the 
Indian public sector banks is low as they are plagued by 
certain policy commitments, regulatory constraints, poor 
utilisation of inputs, and failure to operate at the most 
productive scale size.

The results of the Tobit regression show that the most 
important parameters for banks to be technically efficient 
are capital adequacy and return on assets. The positive 
effect of bank capital on efficiency implies the existence 
of the moral hazard, i.e., banks with less capital leave the 
owners with less incentive to run the bank efficiently. The 
significant positive effect of return on assets shows that 
the higher profitability of banks incentivises the banks to 
be more technically efficient. While the bank size reduces 
the technical efficiency of banks, managerial quality 
has little relevance to the efficiency level of banks. The 
negative effect of bank size on the efficiency score implies 
the existence of ‘too big to fail’ theory in the Indian 
banking industry. Bank profitability and diversification 
are insignificant with respect to the technical efficiency of 
commercial banks in India. Overall, the estimated results 
of this paper suggest that there is adequate opportunity 
for improvement in the performance of commercial banks 
in India, by choosing a proper input-output mix and an 
appropriate scale size.
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