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Abstract

Macroeconomic stability is crucial not only for economic 
growth but also for the living standards and investments 
in a market economy. The macroeconomic variables 
like crude oil price, gold price, exchange rate, inflation 
and stock returns are highly correlated to each other 
and are highly volatile, and the volatility in one market 
spills over to other markets. This paper analyses the 
dynamic causality between crude oil price, exchange 
rate and BSE Sensex and their volatilities in India. The 
daily data on macro variables for 14 years between 
January 2006 to March 2019 is used in the GARCH 
estimation of causal effects of volatility spillovers. The 
GARCH estimates show that the volatility and volatility 
spillover of one market cause volatility and volatility 
spillovers in other markets in India. The crude oil price 
and exchange rate volatility and volatility spillovers 
cause volatility in BSE Sensex. The volatility in BSE 
Sensex is highly overdone by internal shocks of the 
stock market itself.
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Introduction

Macroeconomic stability plays a vital role in determining 
the economic strength and growth of an economy. A stable 
exchange rate, crude oil price, and domestic inflation 
are crucial for the stable stock market. The stability of 
these markets is also important for the living standards 
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and investments in the country. India is among the top 
fast-growing economies in the world, and much of its 
manufacturing industry depends on crude oil. India is 
the third biggest crude oil consumer among the countries 
in the world. Therefore, any volatility in the crude oil 
price will have a significant effect not only on the cost 
of production and price of commodities, but also on the 
cost of living in India. With increasing globalisation and 
international trade, the exchange rate plays a significant 
role in economic growth. Any exchange rate volatility 
not only affects exports, imports, and commodity 
prices, but also the domestic financial sector, and more 
importantly, the interest rate and the value of domestic 
currency, leading to devaluation. The instability of the 
financial sector and the stock market volatility poses a 
grave problem to policy planning, as instability leads to 
uncertainty that may hinder the way towards economic 
growth. Stock market volatility often leads to booms 
and crisis, and even to the crash of the stock market. The 
volatility in these markets often spills over to the other 
markets and sectors of the economy, affecting both the 
real and financial sectors of the economy.

Studies on the causal relationships between macro 
variables show that the volatility in each market causes risk 
to the other markets. However, the results are varied and 
show a wide disparity. While some studies claim support 
for a long-run causality among the macro variables, other 
studies contradict the same. Most studies generally analyse 
the causality between the macroeconomic variables; the 
element of volatility in each variable and its spillover and 
effect on the other variables is largely studied less. To fill 
this gap, this study attempts to understand the dynamic 
causal relationship and the effects of volatility spillovers 
among three important macroeconomic variables, viz. 
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crude oil price, exchange rate, and stock prices, in India. 
In the empirical analysis, the daily data from January 
2006 to March 2019 are used. The causal relationship 
between the macro variables and the direction of causality 
is identified by the Johnsen cointegration and Granger 
causality tests. The effects of volatility spillovers of the 
individual markets over the other markets are estimated 
by the GARCH method.

Review of Literature

Sujit and Rajesh (2011) examine the dynamic relationship 
between gold price, oil price, exchange rate, and stock 
returns using periodic data from January 2, 1998, to June 
5, 2011, consisting of 3,485 observations. The periodic 
relationship between these variables is validated by the 
cointegration and VAR methods. The estimated results 
identify that the exchange rate has a direct influence 
on the gold price, stock market index returns, and oil 
price. However, the influence of the stock market on 
the exchange rate is somewhat lesser, relative to other 
variables. The variance decomposition shows that the 
crude oil price and gold price explain a significant portion 
of the exchange rate variation. The fluctuation in gold 
price is largely dependent on gold price itself than on 
other variables.

Ugurlu (2014) investigates the volatility in the Bucharest 
Exchange Trading Index (BET) of the Bucharest Stock 
Exchange, using daily data for the period May 1, 2000, 
to October 6, 2014. The volatility of BET returns are 
estimated using the most popular volatility models like 
GARCH, EGARCH, TARCH, and PARCH models, and 
the volatility forecast performance of these models are 
analysed using GED distribution for the return of BET. 
The paper identifies that ARMA (2,2) model is the best 
model for investigating a variable by which GARCH 
models are estimated. The EGARCH (1,2) model provides 
the best forecasting performance.

Ali et al. (2020) analyse the long-run relationship between 
exchange rate, gold price, and stock market returns, and 
the effects of exchange rate and gold price of volatilities  
on the stock market volatility in Pakistan between 2001  
and 2018 using the GARCH model. The correlation 
analysis shows a negative association between equity 
returns, crude oil price, and gold price. The Johansen 
cointegration test does not reveal any long-run relationship 

between the stock returns, crude oil price, and gold 
price. The Granger causality test identifies one-way 
causation from oil price to stock returns. The GARCH 
(1,1) estimates show that the exchange rate and gold price 
volatilities negatively influence the stock market returns 
in Pakistan.

In the Indian context, Ghosh (2011) analyses the nexus 
of the extreme oil price volatility with the exchange rate. 
The GARCH and EGARCH methods are applied over 
the period July 2, 2007, to November 28, 2008. The 
study observes that the Indian currency depreciates with 
respect to the US dollar, with rising oil price returns. The 
EGARCH model provides the best assessment of the data 
compared to the other GARCH models. The estimate of 
the asymmetric term is negative and significant, showing 
the existence of asymmetric response in the data. The 
study also reveals that the negative effect of oil price 
shocks on exchange volatility is similar in magnitude to 
the positive effect of oil price volatility. Moreover, the oil 
price shock leaves a permanent effect on exchange rate 
volatility in India.

Sahu et al. (2014) investigate the dynamic relationship 
between crude oil price, exchange rate, and the stock 
price in India, using daily data for the period April 
1993 to March 2013, and applying the VECM method 
of estimation. The results show a long-run relationship 
between crude oil price and stock price, and the changes 
in the exchange rate have no significant impact on either 
stock price or oil price. Higher crude oil price leads to a 
rise in the cost of production, which reduces the earnings 
of a company, thus affecting the equity valuation of the 
company.

Jain and Biswal (2016) examine the dynamic relationship 
between exchange rate, gold price, crude oil price, and 
stock price in India using the GARCH, EGARCH, and 
TGARCH models. The lead-lag linkages between the 
variables are analysed by the symmetric and asymmetric 
non-linear causality tests. The results show that a decrease 
in gold and crude oil prices causes a depressing Indian 
rupee value and stock returns.

Mishra and Debasish (2017) investigate the causal 
relationship between oil price and exchange rate volatility 
spillovers in India with daily data from June 2003 to  
March 2016. The estimated GARCH and EGARCH results 
show that the Indian currency depreciates against the US 
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dollar for an increase in crude oil price. The response of 
the exchange rate to positive and negative oil price shocks 
is similar. The volatility in crude oil price affects the cost 
of production, leading to a change in the price of the good 
and its demand, which alters the exchange rate.

Sathyanarayanan (2018) examines the volatility in crude 
oil price and its impact on the Indian stock market for 
the period January 1, 2006, to December 31, 2015, using 
the BSE Sensex and applying the GARCH model. The 
estimated results show a significant variation in crude oil 
prices, which has a direct influence on stock returns and 
volatility in Sensex.

Mohanamani et al. (2018) analyse the dynamic linkage 
between gold price, oil price, exchange rate, and stock 
market returns using daily data from January 1, 2003, to 
December 12, 2017, and applying the VECM method. The 
study finds evidence from India that a weakened foreign 
exchange market leads to a rise in the gold price and a 
fall in oil price, creating high volatility in the BSE index. 
The cointegration test shows there exists cointegration 
between the variables. The VECM results reveal that 
stock exchange returns are negatively influenced by the 
exchange rate and oil price volatilities. An increase in oil 
price gradually paves way for an increase in exchange 
rate fluctuation, which in turn impacts the long-term 
movements of stock prices.

Hussain et al. (2019) examine the relationship between 
international crude oil price, exchange rate, and stock 
price in India using daily data for the period January 2010 
to October 2018, using the GARCH estimation method. 
The trace, Eigen value, and pairwise cointegration tests 
show no cointegration of BSE with the crude oil price 
and exchange rate. The Granger causality test identifies 
that past exchange rate and oil price influence future 
BSE returns. There exists two-way volatility spillovers 
between the exchange rate (USD) and returns on the 
BSE stock market, and unidirectional volatility spillover 
from the BSE index to the oil price. The equity returns 
of the BSE are therefore influenced by volatilities in the 
exchange rate and crude oil price.

Data and Methodology

This paper uses daily data for 14 years, from January 2006 
to March 2019, on crude oil price, exchange rate, and 
BSE Sensex in India, consisting of 3,755 observations, 

to evaluate the dynamic relationship between, and the 
volatility spillover effect of the individual market over 
others. The monthly closing values of S&P BSE Sensex 
data are obtained from the Bombay Stock Exchange. The 
crude oil price data are collected from the Ministry of 
Petroleum and Natural Gas, the Government of India, and 
the Bloomberg database. The data on the exchange rate is 
derived from the RBI Handbook of Statistics. Crude oil 
data is measured in the US dollar price per barrel using 
WTI (West Texas Intermediate) price and the exchange 
rate is measured by Indian ` against USD.

The time series data has to be tested for certain properties 
before using for analysis. First, the series should be 
stationary, i.e. the mean and variance are to be constant 
over time, and the covariance between two time periods 
are not computed based on the actual period, but on the 
previous period. If data series are non-stationary, the 
regression analysis is a case of spurious regression. The 
stationarity of the time series is normally tested using the 
Augmented Dicky-Fuller (ADF) and Phillips-Perron (PP) 
unit root test. The long-run relationships, i.e. cointegration 
of the variables, are tested by the Johansen cointegration 
test. The causality among the variables is tested by the 
Granger causality test. The extent of the effect of risk 
of one market on the other market is estimated by the 
GARCH method.

Augmented Dicky-Fuller (ADF) Unit Root Test: Consider 
a simple AR(1) process:
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Phillips-Perron (PP) Unit Root Test: The PP test corrects 
for any serial correlation and heteroscedasticity in the 
errors non-parametrically, by modifying the Dickey-
Fuller test statistics (Phillips & Perron, 1988). The PP 
method estimates the non-augmented Dicky-Fuller test 
equation:
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In terms of differencing: 
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𝑖𝑖=1  and 𝜏𝜏 = − ∑ 𝛼𝛼𝑗𝑗
𝑝𝑝
𝑗𝑗−𝑖𝑖+1 . If 𝜋𝜋, the coefficient matrix, has reduced rank, r 

< k, there exist kxr matrices α and β each with rank r such that 𝜋𝜋 = 𝛼𝛼𝛽𝛽′ and 𝛽𝛽′𝑦𝑦𝑡𝑡 is I(0). 
Then, r is the number of cointegrating relations (cointegrating rank) and each column of β is 
the cointegrating vector. The π matrix is estimated as an unrestricted VAR and the 
restrictions implied by the reduced rank of 𝜋𝜋 are to be tested statistically for rejection or 
acceptance. 

Granger Causality Test: The Granger causality assumes that the future cannot cause the past. 
If event x occurs after event y, then x cannot Granger cause y. A variable x is said to Granger 
cause another variable y if the past value of x helps predict the current level of y. The 
causality may also run the other way. If y also causes x, then it is not clear which variable 
influences which variable, and the information on one will not help predict the other. The 
causal relationship may be none, unidirectional, or bidirectional. It is unlikely that 
information on x will help predict y. The Granger causality test estimates pairs of regression 
on the lagged values of both variables: 

𝑦𝑦𝑡𝑡 =  𝛽𝛽1 +  ∑ 𝛽𝛽1𝑖𝑖 𝑥𝑥𝑡𝑡−𝑖𝑖 +𝑝𝑝
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𝑗𝑗=1  𝜀𝜀2𝑡𝑡     (8) 

Where p is the number of lags that adequately models the dynamic structure and the errors 
are white noise. The null hypothesis that x does not Granger cause y is rejected if the 
parameters 𝛽𝛽1𝑝𝑝+𝑗𝑗 are jointly significant. Unidirectional causality from x to y exists if the 
estimated coefficients on the lagged x are statistically different from 0, and the set of 
estimated coefficients on lagged y are not statistically different from 0. Unidirectional 
causality from y to x exists if the set of lagged x coefficients are not statistically different 
from 0 and the set of lagged y coefficients are statistically different from 0. Bilateral causality 
is suggested when the set of x and y coefficients are statistically significantly different from 0 
in both regressions. There is no causal relationship if the sets of x and y coefficients are not 
statistically significant in both regressions. 

ARCH and GARCH Models of Volatility 
Generally, the time-varying serial correlation or volatility and conditional heteroscedasticity 
or volatility clustering in the time series are modelled as a simple autoregressive (AR) 
process. In the absence of autocorrelation, the stationary time series yt can be expressed in 
terms of its mean and the white noise error: 

𝑦𝑦𝑡𝑡 = 𝑦̅𝑦 + 𝑒𝑒𝑡𝑡          (9) 
Where 𝑒𝑒𝑡𝑡is iid with mean zero. The volatility clustering or conditional heteroscedasticity can 
be expressed as: 

𝑒𝑒𝑡𝑡
2 = 𝛾𝛾0 + 𝛾𝛾1𝑒𝑒𝑡𝑡−1

2 + ⋯ + 𝛾𝛾𝑝𝑝𝑒𝑒𝑡𝑡−𝑝𝑝
2 + 𝑢𝑢𝑡𝑡      (10) 

Where 𝑢𝑢𝑡𝑡 is a zero-mean white noise process. This expression is the autoregressive 
conditional heteroscedasticity (ARCH) model (Engle, 1982). Since an ARCH model can be 
written in terms of squared residuals, a simple Lagrange Multiplier (LM) test can be used to 
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is suggested when the set of x and y coefficients are statistically significantly different from 0 
in both regressions. There is no causal relationship if the sets of x and y coefficients are not 
statistically significant in both regressions. 
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Where 𝑢𝑢𝑡𝑡 is a zero-mean white noise process. This expression is the autoregressive 
conditional heteroscedasticity (ARCH) model (Engle, 1982). Since an ARCH model can be 
written in terms of squared residuals, a simple Lagrange Multiplier (LM) test can be used to 
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test for the presence of ARCH effects in the residuals: 𝐻𝐻0: 𝛾𝛾1 = 𝛾𝛾2 = ⋯ = 𝛾𝛾𝑝𝑝 = 0. The test 
statistic follows the chi-square distribution. 

If the p-value is smaller than the five per cent significance level, the null hypothesis 
that there are no ARCH effects is to be rejected. The time series shows volatility clustering or 
persistent residuals. Then, the previous history, usually long periods, is to be used to estimate 
the time-varying volatility, σ2. To control the lags within the reasonable limits in ARCH (q), 
Bollerslev (1986) suggests a more parsimonious and generalised ARCH or GARCH (p,q) 
model: 
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Where 𝛾𝛾𝑖𝑖 , 𝜃𝜃𝑗𝑗 > 0 and (𝛾𝛾𝑖𝑖 +  𝜃𝜃𝑗𝑗 < 1). In the GARCH (p,q) specification, the conditional 
variance σt

2 is thus a linear combination of the squared residuals in the past p periods and the 
conditional variance in the previous q periods. 

Mean Reversion: The GARCH coefficients of a stationary GARCH model captures the 
persistence of volatility in the series. The sum of ARCH and GARCH coefficients specify the 
rate at which the volatility mean reverts to its long-run level. The half-life of the volatility 
shock measures the average number of time periods for the volatility to revert to its long-run 
level and its moving average is used to forecast the series of volatility. In a covariance 
stationary time series 𝑦𝑦𝑡𝑡, there exists an infinite order of moving averages of the form: 

𝑦𝑦𝑡𝑡 = 𝜇𝜇 + ∑ 𝜃𝜃𝑖𝑖𝑒𝑒𝑡𝑡−1
∞
𝑖𝑖=1   𝜃𝜃0 = 1, ∑ 𝜃𝜃𝑖𝑖

2 < ∞∞
𝑖𝑖=1     (12) 

The mean-reverting model is thus specified as: 
(𝑒𝑒𝑡𝑡

2 − 𝜎̅𝜎2) = (𝜇𝜇 + 𝜃𝜃1)(𝑒𝑒𝑡𝑡−1
2 − 𝜎̅𝜎2) + (𝑣𝑣𝑡𝑡 − 𝜃𝜃1𝑣𝑣𝑡𝑡−1)    (13) 

Where 𝜎̅𝜎2 = 𝜇𝜇
(1−𝛾𝛾1−𝜃𝜃1) is the unconditional long-run volatility level and 𝑣𝑣𝑡𝑡 = 𝑒𝑒𝑡𝑡

2 − 𝜎𝜎𝑡𝑡
2. 

Impulse Response Function: The speed of mean reversion is given by the magnitude of (𝛾𝛾1 +
𝜃𝜃1). In the case of the most fitting model, the rate of mean-reverting time (𝛾𝛾1 + 𝜃𝜃1) is very 
close to one. The average time it takes for |𝑒𝑒𝑡𝑡

2 − 𝜎̅𝜎2| to decrease by one-half, i.e. the half-life 
of a volatility shock is given by: 

𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = ln (1
2) /𝑙𝑙𝑙𝑙(𝛾𝛾1 + 𝜃𝜃1)       (14) 

The Impulse Response Function (IRF) plots 𝜃𝜃𝑖𝑖, the decay rate, i.e. the lag at which the IRF 
reaches ½. 

Empirical Analysis 
The descriptive statistics of the variables used to study the causal relationship between oil 
price, exchange rate, and BSE Sensex in India are presented in Table 1. The BSE Sensex and 
oil price are positively skewed and leptokurtic, while the exchange rate is negatively skewed 
and leptokurtic. The Jarque-Bera statistics, measuring the difference of skewness and kurtosis 
of series from the normal distribution, show that there exists normality. 

Table 1: Descriptive Statistics of Variables 
Description Crude Oil Price Exchange Rate BSE Sensex 

Mean 0.002 0.012 0.037 
Median 0.091 0.000 0.112 
Maximum 19.21 4.020 14.618 
Minimum −31.196 −9.168 −13.557 
Standard deviation 2.378 0.508 1.309 
Skewness −0.503 −1.503 −0.545 
Kurtosis 16.263 40.121 15.856 
Jarque-Bera statistic 27674.62 216952.8 26034.99 

. The test statistic 
follows the chi-square distribution.

If the p-value is smaller than the five per cent significance 
level, the null hypothesis that there are no ARCH effects is 
to be rejected. The time series shows volatility clustering 
or persistent residuals. Then, the previous history, usually 
long periods, is to be used to estimate the time-varying 
volatility, σ2. To control the lags within the reasonable 
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parsimonious and generalised ARCH or GARCH (p,q) 
model:
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rate at which the volatility mean reverts to its long-run level. The half-life of the volatility 
shock measures the average number of time periods for the volatility to revert to its long-run 
level and its moving average is used to forecast the series of volatility. In a covariance 
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Where 𝜎̅𝜎2 = 𝜇𝜇
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Impulse Response Function: The speed of mean reversion is given by the magnitude of (𝛾𝛾1 +
𝜃𝜃1). In the case of the most fitting model, the rate of mean-reverting time (𝛾𝛾1 + 𝜃𝜃1) is very 
close to one. The average time it takes for |𝑒𝑒𝑡𝑡

2 − 𝜎̅𝜎2| to decrease by one-half, i.e. the half-life 
of a volatility shock is given by: 

𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = ln (1
2) /𝑙𝑙𝑙𝑙(𝛾𝛾1 + 𝜃𝜃1)       (14) 

The Impulse Response Function (IRF) plots 𝜃𝜃𝑖𝑖, the decay rate, i.e. the lag at which the IRF 
reaches ½. 

Empirical Analysis 
The descriptive statistics of the variables used to study the causal relationship between oil 
price, exchange rate, and BSE Sensex in India are presented in Table 1. The BSE Sensex and 
oil price are positively skewed and leptokurtic, while the exchange rate is negatively skewed 
and leptokurtic. The Jarque-Bera statistics, measuring the difference of skewness and kurtosis 
of series from the normal distribution, show that there exists normality. 

Table 1: Descriptive Statistics of Variables 
Description Crude Oil Price Exchange Rate BSE Sensex 

Mean 0.002 0.012 0.037 
Median 0.091 0.000 0.112 
Maximum 19.21 4.020 14.618 
Minimum −31.196 −9.168 −13.557 
Standard deviation 2.378 0.508 1.309 
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Kurtosis 16.263 40.121 15.856 
Jarque-Bera statistic 27674.62 216952.8 26034.99 
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oil price are positively skewed and leptokurtic, while the exchange rate is negatively skewed 
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p periods and the conditional variance in the previous q 
periods.

Mean Reversion: The GARCH coefficients of a stationary 
GARCH model captures the persistence of volatility in 
the series. The sum of ARCH and GARCH coefficients 
specify the rate at which the volatility mean reverts to 
its long-run level. The half-life of the volatility shock 
measures the average number of time periods for the 
volatility to revert to its long-run level and its moving 
average is used to forecast the series of volatility. In a 
covariance stationary time series, there exists an infinite 
order of moving averages of the form:
	

 

 

test for the presence of ARCH effects in the residuals: 𝐻𝐻0: 𝛾𝛾1 = 𝛾𝛾2 = ⋯ = 𝛾𝛾𝑝𝑝 = 0. The test 
statistic follows the chi-square distribution. 

If the p-value is smaller than the five per cent significance level, the null hypothesis 
that there are no ARCH effects is to be rejected. The time series shows volatility clustering or 
persistent residuals. Then, the previous history, usually long periods, is to be used to estimate 
the time-varying volatility, σ2. To control the lags within the reasonable limits in ARCH (q), 
Bollerslev (1986) suggests a more parsimonious and generalised ARCH or GARCH (p,q) 
model: 

𝜎𝜎𝑡𝑡
2 = ∑ 𝛾𝛾𝑖𝑖 𝑒𝑒𝑡𝑡−𝑖𝑖 

2 + ∑ 𝜃𝜃𝑗𝑗
𝑞𝑞
𝑗𝑗=1

𝑝𝑝
𝑖𝑖=1 𝜎𝜎𝑡𝑡−𝑗𝑗

2       (11) 
Where 𝛾𝛾𝑖𝑖 , 𝜃𝜃𝑗𝑗 > 0 and (𝛾𝛾𝑖𝑖 +  𝜃𝜃𝑗𝑗 < 1). In the GARCH (p,q) specification, the conditional 
variance σt

2 is thus a linear combination of the squared residuals in the past p periods and the 
conditional variance in the previous q periods. 

Mean Reversion: The GARCH coefficients of a stationary GARCH model captures the 
persistence of volatility in the series. The sum of ARCH and GARCH coefficients specify the 
rate at which the volatility mean reverts to its long-run level. The half-life of the volatility 
shock measures the average number of time periods for the volatility to revert to its long-run 
level and its moving average is used to forecast the series of volatility. In a covariance 
stationary time series 𝑦𝑦𝑡𝑡, there exists an infinite order of moving averages of the form: 

𝑦𝑦𝑡𝑡 = 𝜇𝜇 + ∑ 𝜃𝜃𝑖𝑖𝑒𝑒𝑡𝑡−1
∞
𝑖𝑖=1   𝜃𝜃0 = 1, ∑ 𝜃𝜃𝑖𝑖

2 < ∞∞
𝑖𝑖=1     (12) 

The mean-reverting model is thus specified as: 
(𝑒𝑒𝑡𝑡

2 − 𝜎̅𝜎2) = (𝜇𝜇 + 𝜃𝜃1)(𝑒𝑒𝑡𝑡−1
2 − 𝜎̅𝜎2) + (𝑣𝑣𝑡𝑡 − 𝜃𝜃1𝑣𝑣𝑡𝑡−1)    (13) 

Where 𝜎̅𝜎2 = 𝜇𝜇
(1−𝛾𝛾1−𝜃𝜃1) is the unconditional long-run volatility level and 𝑣𝑣𝑡𝑡 = 𝑒𝑒𝑡𝑡

2 − 𝜎𝜎𝑡𝑡
2. 
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Empirical Analysis 
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Where 𝛾𝛾𝑖𝑖 , 𝜃𝜃𝑗𝑗 > 0 and (𝛾𝛾𝑖𝑖 +  𝜃𝜃𝑗𝑗 < 1). In the GARCH (p,q) specification, the conditional 
variance σt

2 is thus a linear combination of the squared residuals in the past p periods and the 
conditional variance in the previous q periods. 

Mean Reversion: The GARCH coefficients of a stationary GARCH model captures the 
persistence of volatility in the series. The sum of ARCH and GARCH coefficients specify the 
rate at which the volatility mean reverts to its long-run level. The half-life of the volatility 
shock measures the average number of time periods for the volatility to revert to its long-run 
level and its moving average is used to forecast the series of volatility. In a covariance 
stationary time series 𝑦𝑦𝑡𝑡, there exists an infinite order of moving averages of the form: 
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Impulse Response Function: The speed of mean reversion is given by the magnitude of (𝛾𝛾1 +
𝜃𝜃1). In the case of the most fitting model, the rate of mean-reverting time (𝛾𝛾1 + 𝜃𝜃1) is very 
close to one. The average time it takes for |𝑒𝑒𝑡𝑡

2 − 𝜎̅𝜎2| to decrease by one-half, i.e. the half-life 
of a volatility shock is given by: 

𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = ln (1
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The Impulse Response Function (IRF) plots 𝜃𝜃𝑖𝑖, the decay rate, i.e. the lag at which the IRF 
reaches ½. 

Empirical Analysis 
The descriptive statistics of the variables used to study the causal relationship between oil 
price, exchange rate, and BSE Sensex in India are presented in Table 1. The BSE Sensex and 
oil price are positively skewed and leptokurtic, while the exchange rate is negatively skewed 
and leptokurtic. The Jarque-Bera statistics, measuring the difference of skewness and kurtosis 
of series from the normal distribution, show that there exists normality. 

Table 1: Descriptive Statistics of Variables 
Description Crude Oil Price Exchange Rate BSE Sensex 

Mean 0.002 0.012 0.037 
Median 0.091 0.000 0.112 
Maximum 19.21 4.020 14.618 
Minimum −31.196 −9.168 −13.557 
Standard deviation 2.378 0.508 1.309 
Skewness −0.503 −1.503 −0.545 
Kurtosis 16.263 40.121 15.856 
Jarque-Bera statistic 27674.62 216952.8 26034.99 
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The Impulse Response Function (IRF) plots qi, the decay 
rate, i.e. the lag at which the IRF reaches ½.

Empirical Analysis

The descriptive statistics of the variables used to study 
the causal relationship between oil price, exchange 

rate, and BSE Sensex in India are presented in  
Table 1. The BSE Sensex and oil price are positively  
skewed and leptokurtic, while the exchange rate is  
negatively skewed and leptokurtic. The Jarque-Bera 
statistics, measuring the difference of skewness and 
kurtosis of series from the normal distribution, show that 
there exists normality.

Table 1:  Descriptive Statistics of Variables

Description Crude Oil 
Price

Exchange 
Rate

BSE 
Sensex

Mean 0.002 0.012 0.037
Median 0.091 0.000 0.112
Maximum 19.21 4.020 14.618
Minimum −31.196 −9.168 −13.557
Standard deviation 2.378 0.508 1.309
Skewness −0.503 −1.503 −0.545
Kurtosis 16.263 40.121 15.856
Jarque-Bera statistic 27674.62 216952.8 26034.99
Probability 0.000 0.000 0.000
Sum −7.886 45.913 139.282
Sum sq. dev. 21228.48 968.936 6432.524
Observations 3754

Fig. 1 presents the trends in the series of daily oil price, 
exchange rate, and Sensex. All the graphs show a high 
range of fluctuations, meaning that the mean values are 
varying over the period and therefore, all the series are 
not stationary at levels. The crude oil price exhibits an 
extraordinarily high price in 2008 and the volatility is 
quite high over time. After a certain fall, the exchange 
rate keeps rising, showing dynamic volatile clustering. 
The stock market is highly volatile, rising and falling 
dynamically. Fig. 2 shows that the first differenced series 
is stationary.



24      International Journal of Banking, Risk and Insurance	 Volume 10 Issue 1 March 2022

 

 

Probability 0.000 0.000 0.000 
Sum −7.886 45.913 139.282 
Sum sq. dev. 21228.48 968.936 6432.524 
Observations 3754 

Fig. 1 presents the trends in the series of daily oil price, exchange rate, and Sensex. All 
the graphs show a high range of fluctuations, meaning that the mean values are varying over 
the period and therefore, all the series are not stationary at levels. The crude oil price exhibits 
an extraordinarily high price in 2008 and the volatility is quite high over time. After a certain 
fall, the exchange rate keeps rising, showing dynamic volatile clustering. The stock market is 
highly volatile, rising and falling dynamically. Fig. 2 shows that the first differenced series is 
stationary. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Trend in Daily Crude Oil Price, Exchange Rate, and BSE Sensex at Levels 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 

   

 

Fig. 1:  Trend in Daily Crude Oil Price, Exchange Rate, and BSE Sensex at Levels

 

 

Probability 0.000 0.000 0.000 
Sum −7.886 45.913 139.282 
Sum sq. dev. 21228.48 968.936 6432.524 
Observations 3754 

Fig. 1 presents the trends in the series of daily oil price, exchange rate, and Sensex. All 
the graphs show a high range of fluctuations, meaning that the mean values are varying over 
the period and therefore, all the series are not stationary at levels. The crude oil price exhibits 
an extraordinarily high price in 2008 and the volatility is quite high over time. After a certain 
fall, the exchange rate keeps rising, showing dynamic volatile clustering. The stock market is 
highly volatile, rising and falling dynamically. Fig. 2 shows that the first differenced series is 
stationary. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Trend in Daily Crude Oil Price, Exchange Rate, and BSE Sensex at Levels 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 

   

 

Fig. 2:  Stationarity of Daily Crude Oil Price, Exchange Rate, and BSE Sensex at First Difference

Unit Root Test: Table 2 presents the results of the  
ADF and PP tests on the unit root of the variables. At 
levels, the p-values of all the variables exceed the 0.05 

critical level, implying that the series is non-stationary 
at levels. At first difference, all the data series are  
stationary.
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Johansen Cointegration Test: Table 3 presents the trace 
and maximum Eigen value statistics of the Johansen 

cointegration test. The test statistics indicate the presence 
of cointegration among the variables.

Table 2:  ADF and PP Unit Root Test at First Difference

Variable 0.05 Critical Value Adf Test Phillips-Perron Test
T Statistic P-Value T Statistic P-Value

Crude oil price −2.862 −66.712 0.000 −66.923 0.000
Exchange rate −2.862 −61.246 0.000 −61.246 0.000
BSE Sensex −2.862 −55.373 0.000 −55.343 0.000

Table 3:  Johansen Cointegration Test

Hypothesised
No. of CE(S)

Eigen 
Value

Trace 
Statistic

0.05 
Critical 
Value

Prob. Max. Eigen 
Value Statistic

0.05 Critical 
Value

Prob.

None* 0.307 3539.088 29.797 0.0001 1378.295 21.132 0.0001
At most 1* 0.001 10.793 15.495 0.389 11.087 14.264 0.661
At most 2* 0.0006 0.27056 3.841 0.361 0.706 3.841 0.322

Granger Causality Test: Table 4 presents the Granger 
causality test results in the direction of the long-run 
causal relationship between the variables. There exists a 
bidirectional causal relationship between exchange rate 
and BSE Sensex. The causality between crude oil price 
and BSE returns is unidirectional, with the causality 
running from crude oil price to BSE Sensex. The causal 
relation between crude oil price and the exchange rate is 
unidirectional, with crude oil price affecting the exchange 
rate.

Table 4:  Pairwise Granger Causality Test

Null Hypothesis F-Statistic P-Value Causality
Exchange rate does not 
Granger cause BSE Sensex

0.07052 0.0002 Yes

BSE Sensex does not 
Granger cause exchange 
rate

51.6654 3.00E−12 Yes

Crude oil price does not 
Granger cause BSE Sensex

4.17015 0.0008 Yes

BSE Sensex does not 
Granger cause crude oil 
price

1.73991 0.3267 No

Crude oil price does not 
Granger cause exchange 
rate

1.0167 0.0248 Yes

Exchange rate does not 
Granger cause crude oil 
price

1.65075 0.0719 No

Optimal Lag Length: In the estimation of the GARCH 
model, the appropriate lag length that can be used for 
ARCH effect estimation is to be chosen using the VAR 
equation. In Table 5, the AIC criterion identifies seven 
lags as the optimal lag length for estimation.

Table 5:  VAR Optimal Lag Length

Determinant residual covariance (df adjusted) 2.318
Determinant residual covariance 2.305
Log-likelihood −17538.32
Akaike information criterion (at lag 2) 9.332*
Schwarz criterion (at lag 2) 9.395
Number of coefficients 21

Note: *Significant at 5% level.

ARCH Effect: To check for ARCH effect in the residuals, 
a regression equation is estimated:
BSE sensex = 0.043 – 0.452 Exchange rate + 0.0422 
Crude oil price		  (15)
Using residual diagnostics, the presence of autocor-
relation in the model is evaluated. Fig. 3 presents the 
residual graph of volatility clustering to understand the 
presence of ARCH effect. The residuals are fluctuating, 
showing heteroscedasticity, implying that volatility in one 
variable causes volatility in other variables.
The heteroscedasticity test results presented in Table 6 
show significant p-values, rejecting the null hypothesis 
of homoscedasticity. The heteroscedasticity test with four 
lags rejects the null hypothesis of no ARCH effect.
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Table 6:  Heteroscedasticity Test of ARCH Effect

Variable Coefficient T Statistic Prob.
Constant 0.952 9.185 0.000
Residual(−1) 2 0.106 6.524 0.000
Residual(−2) 2 0.124 7.623 0.000
R-square 0.251 Durbin-Watson statistic 2.014
F-value 67.044 Prob. F 0.000

Table 7 shows that the p-values of the correlogram 
Q-statistics on all the lags are statistically significant, 
showing the presence of autocorrelation. The 
autocorrelation in the squared residuals is also  
statistically significant, satisfying the condition of ARCH 
estimation.
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Table 7: Correlogram of Residuals and Squared Residuals 

Autocorr
elation 

Partial 
correlatio

n 
Lag 

Residuals Squared Residuals 

AC PAC Q-stat. Prob. AC PAC Q-stat. Prob. 

|*     | |*     | 1 0.074 0.074 20.813 0.000 0.156 0.156 91.603 0.000 
|      | |      | 2 −0.013 −0.019 21.461 0.000 0.173 0.152 203.43 0.000 
|      | |      | 3 −0.030 −0.028 24.870 0.000 0.146 0.104 283.48 0.000 
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Table 7:  Correlogram of Residuals and Squared Residuals

Autocorrelation Partial 
Correlation

Lag Residuals Squared Residuals
AC PAC Q-Stat. Prob. AC PAC Q-Stat. Prob.

|*     | |*     | 1 0.074 0.074 20.813 0.000 0.156 0.156 91.603 0.000
|      | |      | 2 −0.013 −0.019 21.461 0.000 0.173 0.152 203.43 0.000
|      | |      | 3 −0.030 −0.028 24.870 0.000 0.146 0.104 283.48 0.000
|      | |      | 4 −0.009 −0.005 25.171 0.000 0.152 0.101 370.62 0.000
|      | |      | 5 −0.011 −0.011 25.650 0.000 0.129 0.067 433.03 0.000
|      | |      | 6 −0.027 −0.026 28.371 0.000 0.113 0.046 480.66 0.000
|      | |      | 7 −0.019 −0.016 29.735 0.000 0.121 0.057 536.03 0.000
|      | |      | 8 0.039 0.040 35.330 0.000 0.095 0.027 570.06 0.000
|      | |      | 9 0.052 0.044 45.422 0.000 0.115 0.051 619.99 0.000
|      | |      | 10 0.025 0.018 47.788 0.000 0.085 0.018 647.35 0.000

As there exists an ARCH effect, the GARCH model is 
estimated with lags. The correlogram squared residuals 
and ARCH LM test are performed to check for volatility 
spillover from one market to another. The GARCH (1,1) 
estimates presented in Table 8 show that the crude oil 
price has a significant direct effect on the BSE Sensex. 
An increase in crude oil price leads to about a two per 

cent increase in the stock price. The estimated effect of 
the exchange rate on the stock market is significantly 
negative, showing that there is an inverse relationship 
between the exchange rate and Sensex. In the variance 
equation, both ARCH and GARCH terms are statistically 
significant, implying that the volatility in BSE Sensex is 
also influenced by its own shocks.
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After adjusting for the GARCH effect, residual statistics 
and heteroscedasticity tests to confirm the volatility 
spillover effects, reported in Table 9, show no presence 
of heteroscedasticity autocorrelation, as the respective 

p-values are greater than 0.05 significance level, thus 
rejecting the null hypotheses. Therefore, the risk factor 
involved in the exchange rate and crude oil price affects 
the domestic stock market and volatility in stock prices.

Table 8:  GARCH (1,1) Estimates of BSE Sensex

Variable GARCH(1,1) Model Variance Equation
Coefficient Z-Statistic Variable Coefficient Z-Statistic

Exchange rate −0.280
(0.019)

5.526
[0.00]

Residual(−1)2 0.121 (0.007) 16.038 (0.00)

Crude oil price 0.020
(0.006)

−14.460 [0.00] GARCH(−1) 0.872 (0.007) 119.789 (0.00)

Constant 0.0008 (0.0001) 3.137
[0.002]

Constant 2.24E−06 
(2.68E−07)

8.345

F-statistic 0.317 R-square 0.030
Prob.F 0.574 Adjusted R-square 0.025
R-square 0.317 Log-likelihood 11773.17
Durbin-Watson statistic 2.001 Durbin-Watson statistic 1.826

	 Note: Standard errors in parentheses. Probability values in brackets.

Table 9:  Correlogram of Squared Residuals after GARCH (1,1) Estimation

Autocorrelation
Partial 

Correlation
Lag AC PAC Q-Statistic Prob.

|      | |      | 1 0.009 0.009 0.3170 0.573
|      | |      | 2 −0.015 −0.015 1.1570 0.561
|      | |      | 3 0.009 0.009 1.4556 0.693
|      | |      | 4 −0.004 −0.004 1.5042 0.826
|      | |      | 5 −0.011 −0.010 1.9408 0.857
|      | |      | 6 0.001 0.001 1.9482 0.924
|      | |      | 7 −0.013 −0.013 2.5400 0.924
|      | |      | 8 −0.015 −0.014 3.3739 0.909
|      | |      | 9 −0.014 −0.014 4.1205 0.903
|      | |      | 10 −0.025 −0.025 6.4435 0.777

Conclusion

Macroeconomic factors like crude oil price, exchange rate, 
gold price, inflation, and stock returns play a vital role in 
the economic growth of a country. As these variables are 
highly related to each other and are highly volatile, the 
volatility in one market spills over to other markets. This 
paper examines the dynamic causal relationship between 
crude oil price, exchange rate, and the BSE Sensex using 
daily data for 14 years, from January 2006 to March 
2019 for India, consisting of 3,755 observations, and 
applying the GARCH estimation method to understand 

the volatility effects of one market on the other markets in 
India. The Augmented Dickey-Fuller and Philips-Perron 
unit root tests of stationarity are applied. The Johansen 
cointegration test is used to understand the long-run 
association between the crude oil price, exchange rate, 
and stock prices. The Granger causality tests show 
bidirectional causality between exchange rate and BSE 
Sensex, and unidirectional causality from crude oil price 
to BSE Sensex and exchange rate, in the long run. The 
volatility effects of crude oil price and exchange rate on 
the stock market show that the BSE Sensex is influenced 
by the fluctuations in crude oil price and exchange rate. 
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The volatility in BSE Sensex is also highly overdone by 
internal shocks of the stock market itself. Overall, the  
stock market swings are highly affected by its own shocks, 
as well as by the volatility in other macroeconomic 
variables, like oil price and exchange rate. Thus, the 
volatility and volatility spillover of one market cause 
volatility and volatility spillovers in other markets in 
India.
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