
Abstract: With the development of 4G network technology, 
gradually 5G wireless communication technology has also 
been derived and has been studied in deeply. 5G technology 
has been developed with based on 4G technology to 
strengthen its advantages, discard its shortcomings, and 
obtain further breakthroughs in functions. Due to the 
development of 4G technology, communication services 
such as downloading and transmitting large-volume data 
are being accomplished at an enormous speed. Orthogonal 
Frequency Division Multiplexing (OFDM) is a multi-carrier 
data transmission system that converts high-speed data 
streams into multiple parallel low-speed data streams by 
serial/parallel conversion, and then distributes them to sub 
channels on mutually orthogonal subcarriers of different 
frequencies for transmission. This technology has been 
recognized by the industry as the core technology of the new 
generation of wireless mobile communication systems. This 
paper mainly discusses the principle of OFDM-based LTE 
communication technology, and multi-channel simulation 
and analysis the performance of OFDM transmission 
system based on the MATLAB platform.
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I. Introduction

People have used a variety of communication technologies 
from ancient times to the present, ranging from the most 
primitive pigeons and carriages through ships and trains in 
the steam period, to the most recent derivative 5G technology. 
These different periods represent different levels of people’s 
technological progress. The most recent decade has been the 

fastest growing stage in the history of wireless communication 
technology [1] [2]. With people’s increasing demand for 
multimedia services, wireless communication technology has 
developed from 3G and 4G to the latest 5G in the direction of 
larger data volume and faster transmission rate [3]. At present, 
the communication technology that accounts for the largest share 
of the global communication market is still 4G, and Orthogonal 
Frequency Division Multiplexing (OFDM) is the core strategy of 
the fourth-generation mobile communication [4]. 

In the traditional multi-carrier frequency division multiplexing 
system [5], in order to prevent internal interference between 
sub-carriers, each sub-channel uses different carriers to 
transmit data in parallel. In this system, the sub-carriers are 
separated far enough to prevent spectrum overlap. Due to this 
compromised isolation technology, the spectrum efficiency 
of traditional information transmission systems is very low. 
Before the equalizer was adopted, people used this multi-carrier 
method for high-speed communication in the channel. In order 
to overcome the shortcomings of low spectrum efficiency of 
traditional strategies, in 1970, Weinstein and Ebert proposed 
the first OFDM prototype [6]. However, due to the limitations 
of the technological level and hardware conditions at that 
time, this new technology has not been put into widespread 
use. Until 2010, with the support of mature electronic device 
manufacturing processes and the development of digital 
technology, it took more than 30 years for OFDM to regain the 
attention of scientific researchers.

Basically, Orthogonal Frequency Division Multiplexing 
(OFDM) is a communication technology where a channel 
divided into several orthogonal sub-channels, convert high-
speed data signals into parallel low-speed sub-data streams, and 
then modulate them for transmission on each sub-channel. After 
that, the orthogonal signals can be separated by using related 
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technologies at the receiving end, which can reduce the mutual 
interference between sub-channels ICI [7]. The frequency 
distribution of subcarriers in OFDM is shown in Fig. 1.
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The signal bandwidth on each sub channel is smaller than the 
relevant bandwidth of the channel, so the signal on each sub 
channel can be regarded as flat fading, which can eliminate 
inter-symbol interference. After separating multiple orthogonal 
sub-carriers, discrete fourier transform (DFT) and its inverse 
transform (IDFT) are applied to the parallel transmission 
system as part of the modulation and demodulation process [8] 
[9]. This solves the problem of transmission and transmission 
in a multi-carrier transmission system. The application of fast 
Fourier transform greatly reduces the complexity of the multi-
carrier transmission system. In this way, it is possible to realize 
FDM without applying a band-pass filter and only through 
baseband processing.

The OFDM technology is used in various communication 
systems such as- Wi-Fi 802.11ac, 4G and 5G cellular phone 
technologies, Wi-MAX, Satellite and so on [10]. OFDM 
system has been widely used in communication technology in 
recent years mainly due to its some advantages such as- higher 
spectrum utilization, excellent anti-multipath interference and 
anti-fading ability, more sensitive resource allocation, faster 
asymmetrical transmission rate. Although OFDM has the above 
excellent technical advantages, some problems have gradually 
emerged in the actual application process such as- excessive 
system complexity, more sensitive frequency response, high 
PAPR (Peak to Average Power Ratio) [11].

All the simulations are implemented on MATLAB 9.6 (2019a) 
and the system configuration is Core i3-2.40 GHz processor 
with windows 10 based 64 bit operating system.

The entire paper is organized as follows, Section I contains the 
introduction of this paper, Section II contain the description of 
the required fundamental components of the system, Section 
III contain the working principle of OFDM system, Section IV 
contain the OFDM system simulation in step by step, Section 
V describes results and discussion and finally the conclusion of 
this research work has been drawn in last section.

II. Fundamental Components

A. Channel Model

The AWGN channel is very popular due to its non-fading 
properties and simplicity. The time of passing signals through 
the channel the AWGN channel adds White Gaussian noise to 
the signal [12] [13]. The Probability density function is always 
following Gaussian distribution and the equation of Gaussian 
distribution is expressed as-
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Where 𝑥𝑥 = Random variable 
𝜇𝜇 = Mean value 
𝜎𝜎 = Standard deviation 
Through AWGN channel a received signal is expressed as- 
 

𝑟𝑟(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝑛𝑛(𝑡𝑡)                                 (2) 
 
Where 𝑥𝑥(𝑡𝑡) = Transmitted signal 
𝑛𝑛(𝑡𝑡) = Additive White Gaussian noise 

B. Modulation Methods 
At present, in order to meet people's demand for more and 
faster data transmission, multi-system digital modulation has 
become more and more popular. In this experiment, the two 
modulation methods M-PSK and M-QAM were tested 
separately [14]. Two modulation techniques are analyzed when 
the control output is the same variable. The waveform 
expression after these two modulations is as follows: 

𝑆𝑆𝑖𝑖(𝑡𝑡) =  √2𝐸𝐸𝑠𝑠
𝑇𝑇𝑠𝑠

 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜃𝜃𝑖𝑖)              (3) 
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C. Cyclic Prefix 
In the traditional protecting plan, there will be no any signal in 
the protecting interval, which means there will be a free 
transmitting period. However, in this condition, the multi-path 
effect will leads to ICI and ISI. In order to maintain the 
orthogonality of signals and eliminate the interferences, a series 
of cyclic prefix is needed to be inserted into the protecting 
interval. In this way, the period difference between one 
subcarrier and another subcarrier must be an integer. After 
testing, it shows that if the length of cyclic prefix is greater 
than or equal to the length of channel’s impulse response, the 
ICI and ISI will be complete eliminated [15]. 

 
Fig. 2: Subcarrier Frequency after Adding Cyclic Prefix 

D. Emitter and Receiver Composition 
The following Fig. 3 shows the transmitter block diagram of 
the OFDM system after the guard interval is added, so that the 
loss of power and information rate transmission can be 
calculated.   

 
Fig. 3: Emitter of OFDM System 

The composition of the receiving electrode is similar to that of 
the transmitting electrode, but in the opposite direction. The 
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be an integer. After testing, it shows that if the length of cyclic 
prefix is greater than or equal to the length of channel’s impulse 
response, the ICI and ISI will be complete eliminated [15].
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system as part of the modulation and demodulation process [8] 
[9]. This solves the problem of transmission and transmission 
in a multi-carrier transmission system. The application of fast 
Fourier transform greatly reduces the complexity of the multi-
carrier transmission system. In this way, it is possible to realize 
FDM without applying a band-pass filter and only through 
baseband processing. 

The OFDM technology is used in various communication 
systems such as- Wi-Fi 802.11ac, 4G and 5G cellular phone 
technologies, Wi-MAX, Satellite and so on [10]. OFDM 
system has been widely used in communication technology in 
recent years mainly due to its some advantages such as- higher 
spectrum utilization, excellent anti-multipath interference and 
anti-fading ability, more sensitive resource allocation, faster 
asymmetrical transmission rate. Although OFDM has the 
above excellent technical advantages, some problems have 
gradually emerged in the actual application process such as- 
excessive system complexity, more sensitive frequency 
response, high PAPR (Peak to Average Power Ratio) [11]. 

All the simulations are implemented on MATLAB 9.6 (2019a) 
and the system configuration is Core i3-2.40 GHz processor 
with windows 10 based 64 bit operating system. 
The entire paper is organized as follows, Section I contains the 
introduction of this paper, Section II contain the description of 
the required fundamental components of the system, Section III 
contain the working principle of OFDM system, Section IV 
contain the OFDM system simulation in step by step, Section 
V describes results and discussion and finally the conclusion of 
this research work has been drawn in last section. 

II. FUNDAMENTAL COMPONENETS 

A. Channel Model 
The AWGN channel is very popular due to its non-fading 
properties and simplicity. The time of passing signals through 
the channel the AWGN channel adds White Gaussian noise to 
the signal [12] [13]. The Probability density function is always 
following Gaussian distribution and the equation of Gaussian 
distribution is expressed as- 
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Where 𝑥𝑥 = Random variable 
𝜇𝜇 = Mean value 
𝜎𝜎 = Standard deviation 
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𝑛𝑛(𝑡𝑡) = Additive White Gaussian noise 

B. Modulation Methods 
At present, in order to meet people's demand for more and 
faster data transmission, multi-system digital modulation has 
become more and more popular. In this experiment, the two 
modulation methods M-PSK and M-QAM were tested 
separately [14]. Two modulation techniques are analyzed when 
the control output is the same variable. The waveform 
expression after these two modulations is as follows: 
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C. Cyclic Prefix 
In the traditional protecting plan, there will be no any signal in 
the protecting interval, which means there will be a free 
transmitting period. However, in this condition, the multi-path 
effect will leads to ICI and ISI. In order to maintain the 
orthogonality of signals and eliminate the interferences, a series 
of cyclic prefix is needed to be inserted into the protecting 
interval. In this way, the period difference between one 
subcarrier and another subcarrier must be an integer. After 
testing, it shows that if the length of cyclic prefix is greater 
than or equal to the length of channel’s impulse response, the 
ICI and ISI will be complete eliminated [15]. 
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D. Emitter and Receiver Composition 
The following Fig. 3 shows the transmitter block diagram of 
the OFDM system after the guard interval is added, so that the 
loss of power and information rate transmission can be 
calculated.   
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The composition of the receiving electrode is similar to that of 
the transmitting electrode, but in the opposite direction. The 

Fig. 2: Subcarrier Frequency after Adding Cyclic Prefix

D. Emitter and Receiver Composition

The following Fig. 3 shows the transmitter block diagram of the 
OFDM system after the guard interval is added, so that the loss 
of power and information rate transmission can be calculated.  

channel can be regarded as flat fading, which can eliminate 
inter-symbol interference. After separating multiple orthogonal 
sub-carriers, discrete Fourier transform (DFT) and its inverse 
transform (IDFT) are applied to the parallel transmission 
system as part of the modulation and demodulation process [8] 
[9]. This solves the problem of transmission and transmission 
in a multi-carrier transmission system. The application of fast 
Fourier transform greatly reduces the complexity of the multi-
carrier transmission system. In this way, it is possible to realize 
FDM without applying a band-pass filter and only through 
baseband processing. 

The OFDM technology is used in various communication 
systems such as- Wi-Fi 802.11ac, 4G and 5G cellular phone 
technologies, Wi-MAX, Satellite and so on [10]. OFDM 
system has been widely used in communication technology in 
recent years mainly due to its some advantages such as- higher 
spectrum utilization, excellent anti-multipath interference and 
anti-fading ability, more sensitive resource allocation, faster 
asymmetrical transmission rate. Although OFDM has the 
above excellent technical advantages, some problems have 
gradually emerged in the actual application process such as- 
excessive system complexity, more sensitive frequency 
response, high PAPR (Peak to Average Power Ratio) [11]. 

All the simulations are implemented on MATLAB 9.6 (2019a) 
and the system configuration is Core i3-2.40 GHz processor 
with windows 10 based 64 bit operating system. 
The entire paper is organized as follows, Section I contains the 
introduction of this paper, Section II contain the description of 
the required fundamental components of the system, Section III 
contain the working principle of OFDM system, Section IV 
contain the OFDM system simulation in step by step, Section 
V describes results and discussion and finally the conclusion of 
this research work has been drawn in last section. 

II. FUNDAMENTAL COMPONENETS 

A. Channel Model 
The AWGN channel is very popular due to its non-fading 
properties and simplicity. The time of passing signals through 
the channel the AWGN channel adds White Gaussian noise to 
the signal [12] [13]. The Probability density function is always 
following Gaussian distribution and the equation of Gaussian 
distribution is expressed as- 
 

𝑓𝑓𝑔𝑔(𝑥𝑥) =  1
𝜎𝜎√2𝜋𝜋

𝑒𝑒
−(𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2                           (1) 

 
Where 𝑥𝑥 = Random variable 
𝜇𝜇 = Mean value 
𝜎𝜎 = Standard deviation 
Through AWGN channel a received signal is expressed as- 
 

𝑟𝑟(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝑛𝑛(𝑡𝑡)                                 (2) 
 
Where 𝑥𝑥(𝑡𝑡) = Transmitted signal 
𝑛𝑛(𝑡𝑡) = Additive White Gaussian noise 

B. Modulation Methods 
At present, in order to meet people's demand for more and 
faster data transmission, multi-system digital modulation has 
become more and more popular. In this experiment, the two 
modulation methods M-PSK and M-QAM were tested 
separately [14]. Two modulation techniques are analyzed when 
the control output is the same variable. The waveform 
expression after these two modulations is as follows: 

𝑆𝑆𝑖𝑖(𝑡𝑡) =  √2𝐸𝐸𝑠𝑠
𝑇𝑇𝑠𝑠

 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜃𝜃𝑖𝑖)              (3) 

𝑆𝑆𝑖𝑖(𝑡𝑡) =  √2𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑠𝑠

𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) + √2𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑠𝑠

𝑏𝑏𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡)  (4) 

C. Cyclic Prefix 
In the traditional protecting plan, there will be no any signal in 
the protecting interval, which means there will be a free 
transmitting period. However, in this condition, the multi-path 
effect will leads to ICI and ISI. In order to maintain the 
orthogonality of signals and eliminate the interferences, a series 
of cyclic prefix is needed to be inserted into the protecting 
interval. In this way, the period difference between one 
subcarrier and another subcarrier must be an integer. After 
testing, it shows that if the length of cyclic prefix is greater 
than or equal to the length of channel’s impulse response, the 
ICI and ISI will be complete eliminated [15]. 

 
Fig. 2: Subcarrier Frequency after Adding Cyclic Prefix 

D. Emitter and Receiver Composition 
The following Fig. 3 shows the transmitter block diagram of 
the OFDM system after the guard interval is added, so that the 
loss of power and information rate transmission can be 
calculated.   

 
Fig. 3: Emitter of OFDM System 

The composition of the receiving electrode is similar to that of 
the transmitting electrode, but in the opposite direction. The 

Fig. 3: Emitter of OFDM System

The composition of the receiving electrode is similar to that 
of the transmitting electrode, but in the opposite direction. 
The emitter loss function after adding the cyclic prefix can be 
defined as-
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III. WORKING PRINCIPLE OF OFDM SYSTEM 
In this section, the working principle of the OFDM system has 
been discussed. The original source signal is analog and 
continuous. After baseband modulation (including sampling 
and filtering), the form of the signal is transformed into a 
discrete frequency domain signal. Then enter the OFDM 
module, the discrete signal is decomposed into multiple 
orthogonal and overlapping parallel sub-carriers, these sub-
carriers exist in their respective sub-channels. Next, the motion 
IDFT or IFFT technology modulates the signal and converts it 
into an analog signal again [16]. In this experiment, because 
the number of subcarriers is relatively large, IFFT [17] is used 
to reduce the algorithm complexity. 

 
Fig. 4: OFDM System Flow Chart 

 After that, the resulting analog model needs to be added to the 
cyclic prefix to simply and effectively eliminate inter-channel 
interference caused by multipath effects. It should be noted that 
in the process of inserting the cyclic prefix, the duration of the 
guard interval needs to be determined according to the current 

wireless channel conditions. According to convention, the 
length of the guard interval should be 2 to 4 times the square 
root of the time delay extension. Finally, the parallel signal is 
converted into a serial signal and input to the transmitting filter 
for transmission. So far, the transmitting end of the OFDM 
system has completed its transmission task. The parallel signal 
sent by the transmitter passes through the physical channel, and 
is affected by the weakening and noise caused by the channel 
transmission, and some details will be lost. The specific loss 
ratio is related to the signal-to-noise ratio (SNR) of the source 
signal. In order to easily simulate the signal loss caused by the 
transmission process, this experiment uses a defined signal-to-
noise ratio to explore the relationship between it and the signal-
to-noise ratio. After receiving the signal, the receiving end will 
filter it first, and then transmit the obtained signal to the OFDM 
receiving end or directly to the information host after 
demodulation. The specific path selection depends on the result 
of channel estimation and frame synchronization recovery. 
After the OFDM receiver receives the continuous serial time 
domain signal, it first converts it into parallel, and then 
removes the cyclic prefix of each subcarrier. (Regardless of 
whether there is a cyclic prefix, only the signal itself is 
considered when performing FFT or IFFT modulation on the 
signal, and the cyclic prefix is not considered.) Next, use the 
FFT method to convert the time domain signal into the 
frequency domain, and input the converted frequency domain 
response into In the equalizer. In theory, the processed signal 
does not have any inter-symbol crosstalk. Finally, perform 
parallel-to-serial conversion and baseband demodulation on the 
obtained signal. At this point, the work of the OFDM receiver 
is completely over. 

IV. SYSTEM SIMULATION 
In this section, the simulation of OFDM system has been 
discussed and analyzed the sequence of the signal changes in 
the OFDM system. 

In order to better control the variables, the experiment did not 
use randomly generated one-dimensional signals, but used a 
simple binary image as transmitted data and compare after 
reception. Other experimental parameters are shown in the 
Table I. 
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Data/Noise -10:5:25 

Number of Subcarriers 512 

Slot number per frame 20 

Sym number per slot 7 

Sym number per slot pilot 2 

Sym number per slot data 5 

Channel AWGN 

Modulator QAM and 
MPSK 
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After that, the resulting analog model needs to be added to the 
cyclic prefix to simply and effectively eliminate inter-channel 
interference caused by multipath effects. It should be noted 
that in the process of inserting the cyclic prefix, the duration 
of the guard interval needs to be determined according to the 
current wireless channel conditions. According to convention, 
the length of the guard interval should be 2 to 4 times the square 
root of the time delay extension. Finally, the parallel signal is 
converted into a serial signal and input to the transmitting filter 
for transmission. So far, the transmitting end of the OFDM 
system has completed its transmission task. The parallel signal 
sent by the transmitter passes through the physical channel, and 
is affected by the weakening and noise caused by the channel 
transmission, and some details will be lost. The specific loss 
ratio is related to the signal-to-noise ratio (SNR) of the source 
signal. In order to easily simulate the signal loss caused by the 
transmission process, this experiment uses a defined signal-
to-noise ratio to explore the relationship between it and the 
signal-to-noise ratio. After receiving the signal, the receiving 
end will filter it first, and then transmit the obtained signal to the 
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OFDM receiving end or directly to the information host after 
demodulation. The specific path selection depends on the result 
of channel estimation and frame synchronization recovery. 
After the OFDM receiver receives the continuous serial time 
domain signal, it first converts it into parallel, and then removes 
the cyclic prefix of each subcarrier. (Regardless of whether 
there is a cyclic prefix, only the signal itself is considered when 
performing FFT or IFFT modulation on the signal, and the cyclic 
prefix is not considered). Next, use the FFT method to convert 
the time domain signal into the frequency domain, and input 
the converted frequency domain response into In the equalizer. 
In theory, the processed signal does not have any inter-symbol 
crosstalk. Finally, perform parallel-to-serial conversion and 
baseband demodulation on the obtained signal. At this point, 
the work of the OFDM receiver is completely over.

IV. System Simulation

In this section, the simulation of OFDM system has been 
discussed and analyzed the sequence of the signal changes in 
the OFDM system.

In order to better control the variables, the experiment did not 
use randomly generated one-dimensional signals, but used 
a simple binary image as transmitted data and compare after 
reception. Other experimental parameters are shown in the 
Table I.

Table I: E xperimental Parameters

Parameters Value
Data/Noise -10:5:25
Number of Subcarriers 512
Slot number per frame 20
Sym number per slot 7
Sym number per slot pilot 2
Sym number per slot data 5
Channel AWGN
Modulator QAM and MPSK

 

 
Fig. 5: Data Source and its Time & Frequency Response 

Step 1, we choose Additive White Gaussian Noise channel [18] 
for simulation experiment. The source picture and its time-
frequency response [19] are as follows. (In order to save time, 
from then on, the time frequency analysis is limited to the first 
200 sampling points). 

Step 2, use 100PSK modulation to output the signal as 100 
different phase carriers by phase selecting. Then, use 16QAM 
modulation to differentiate signal changes in amplitude. 
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Step 1, we choose Additive White Gaussian Noise channel [18] 
for simulation experiment. The source picture and its time-
frequency response [19] are shown in Fig. 5. (In order to save 
time, from then on, the time frequency analysis is limited to the 
first 200 sampling points).

Step 2, use 100PSK modulation to output the signal as 100 
different phase carriers by phase selecting and the obtained 
output figures are shown in Fig. 6. Then, use 16QAM 
modulation to differentiate signal changes in amplitude and the 
obtained output figures are shown in Fig. 7.
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Fig. 8: Output of IFFT 

Step 3, in order to add cyclic prefix, apply IFFT to the 
modulated signal to convert it from frequency domain to time 
domain. 

 
Fig. 9: Time Response with CP 

Step 4, Add cyclic prefix to the obtained signal. As shown in 
the Fig. 9, the blue part is the cyclic prefix of the sub-carrier. 
After the CP is added, the tail of the previous symbol will not 
fall in the sampling interval of this signal, so that ISI is fully 
avoided. In addition, due to the cyclic convolution 
characteristic of the FFT, the signal is regarded as a circle in 
this step, and a complete signal can be obtained no matter 
where the FFT window is added. So in this step, CP also 
eliminates ICI to a certain extent.  
 
Step 5, the signal needs to be up-sampled before the data is 
transmitted from the transmitter to the channel. After this, 
Gaussian noise is added to the signal by the simulated AWGN 
channel, and the mixed signal is input to the receiving terminal. 
Then, apply a low-pass filter to the received signal. The effect 
of using a low-pass filter here is mainly to reduce power 
leakage. Suppress the parts other than the main component of 
the sub-carrier to reduce the interference between carriers. 
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Step 6, apply low-pass filter on receiving terminal to reduce the 
noise effect, because for image data, the high frequency part is 
commonly noise. 
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after 16QAM

 
Fig. 7: Constellation Plot after 16QAM 

 
Fig. 8: Output of IFFT 

Step 3, in order to add cyclic prefix, apply IFFT to the 
modulated signal to convert it from frequency domain to time 
domain. 

 
Fig. 9: Time Response with CP 

Step 4, Add cyclic prefix to the obtained signal. As shown in 
the Fig. 9, the blue part is the cyclic prefix of the sub-carrier. 
After the CP is added, the tail of the previous symbol will not 
fall in the sampling interval of this signal, so that ISI is fully 
avoided. In addition, due to the cyclic convolution 
characteristic of the FFT, the signal is regarded as a circle in 
this step, and a complete signal can be obtained no matter 
where the FFT window is added. So in this step, CP also 
eliminates ICI to a certain extent.  
 
Step 5, the signal needs to be up-sampled before the data is 
transmitted from the transmitter to the channel. After this, 
Gaussian noise is added to the signal by the simulated AWGN 
channel, and the mixed signal is input to the receiving terminal. 
Then, apply a low-pass filter to the received signal. The effect 
of using a low-pass filter here is mainly to reduce power 
leakage. Suppress the parts other than the main component of 
the sub-carrier to reduce the interference between carriers. 

 
Fig. 10: Time & Frequency Response of Upsampler 

 
Fig. 11: Output Signal after Tx Filtering 

Step 6, apply low-pass filter on receiving terminal to reduce the 
noise effect, because for image data, the high frequency part is 
commonly noise. 

Fig. 8: Output of IFFT

Step 3, in order to add cyclic prefix, apply IFFT to the modulated 
signal to convert it from frequency domain to time domain and 
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Step 6, apply low-pass filter on receiving terminal to reduce the 
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frequency, the more the signal obtained can represent the 
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V. Results and Discussions

Comparing Fig. 13 and Fig. 5, we can find that after 
demodulation, the picture at the receiving end has a discernible 
change from the original picture. By comparing the frequency 
maps of the two, we can see that in the Gaussian channel, the 
signal is mixed with uniform and random Gaussian white noise 
[4]. By observing Fig. 14 to Fig. 16, we can also easily find 
that as the signal-to-noise ratio gradually increases, the time 
response of receiving terminal becomes more sparse. Besides, 
the difference between the output end and the receiving end 
gradually tends to zero. The mentioned difference above is the 
Gaussian noise from AWGN channel. From this we can infer 
that as long as the signal strength is large enough, the OFDM 
system is fully capable of performing lossless information 
transmission. We can also conclude that the Gaussian noise 
obtained from physical channel is uniform and random.
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From the above Fig. 19, we can find that as the SNR increases, 
the Gaussian noise contained in the picture of the receiving 
terminal decreases. For the test picture used in the current 
experiment, when the value of SNR is between 0-5, the system 
simulation has the highest degree of excellence, which is 
closest to the theoretical curve. 
 
In addition, by comparing the output of Fig. 17 and Fig. 18, we 
found that when the system input is random multi-frequency 
noise, the BER result is roughly the same as the test image. 
However, as the SNR increases, the goodness of fit of the BER 
of multi-frequency signals is lower than that of a single 
frequency. 
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under the AWGN channel. The results obtained from the 
experiment also verify the advantages and disadvantages of 
OFDM mentioned above. In addition, the experiment can 
further explore the transmission performance of OFDM under 
different conditions by adding other channel tests.  
 
The most valuable development direction of OFDM in the 
future is multi-antenna technology. Because multi-antenna 
technology can ideally increase system capacity and highlight 
system characteristics, and can significantly improve network 
stability and reliability, and greatly increase signal coverage, it 
is especially suitable for use in Internet and multimedia 
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From the above Fig. 19, we can find that as the SNR increases, 
the Gaussian noise contained in the picture of the receiving 
terminal decreases. For the test picture used in the current 
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experiment, when the value of SNR is between 0-5, the system 
simulation has the highest degree of excellence, which is closest 
to the theoretical curve.

In addition, by comparing the output of Fig. 17 and Fig. 18, we 
found that when the system input is random multi-frequency 
noise, the BER result is roughly the same as the test image. 
However, as the SNR increases, the goodness of fit of the 
BER of multi-frequency signals is lower than that of a single 
frequency.

VI. Conclusion

This article first briefly introduced the basic ideas of the OFDM 
system. Then the working principle of the OFDM system is 
described in detail according to the module sequence in Fig. 17 
and Fig. 18. Then use experiments to analyze the information 
transmission performance of the OFDM system under the 
AWGN channel. The results obtained from the experiment also 
verify the advantages and disadvantages of OFDM mentioned 
above. In addition, the experiment can further explore the 
transmission performance of OFDM under different conditions 
by adding other channel tests. 

The most valuable development direction of OFDM in the 
future is multi-antenna technology. Because multi-antenna 
technology can ideally increase system capacity and highlight 
system characteristics, and can significantly improve network 
stability and reliability, and greatly increase signal coverage, it 
is especially suitable for use in Internet and multimedia services. 
The MIMO-OFDM system combines MIMO technology and 
OFDM technology, which greatly improves the performance of 
the system. In the future, only if the shortcomings are overcome, 
OFDM can play a greater role in the post-5G era.
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