
Abstract: Machine learning is a widely interdisciplinary 
field centered on theories from cognitive science, computer 
science, statistics, optimization and many other theoretical 
and mathematical disciplines. Classification is a supervised 
learning technique used in machine learning to evaluate a 
given dataset and to create a model that divides data into 
a desired and distinct number of groups. The strength of 
SVMs lies in their use of nonlinear kernel features that map 
input into high-dimensional spaces of features implicitly. 
We’ll address the value of SVMs in this survey article. 
Discussing their SVM tuning parameters as well. The main 
purpose of this paper is to include detailed studies on SVM 
implementations by contrasting the current ML models 
with the SVM versions, also poses the problems of the 
intrusion detection method of the support vector machines, 
and also this paper provides researchers with a summary of 
the SVM that assists in their future analysis.

Keywords: Data Mining (DM), Intrusion Detection System 
(IDS), Machine Learning (ML), Optimization, Support 
Vector Machines (SVMs).

A Comprehensive Survey on Support Vector 
Machines for Intrusion Detection System 

Akram Salim Khanfar1, Firdous Ahmad Lone2 and MD Moizuddin3*

1Faculty, King Saud University, Saudi Arabia. Email: akram.khanfar2011@gmail.com
2Faculty, King Saud University, Saudi Arabia. Email: lonefirdous686@gmail.com

3Faculty, King Saud University, Saudi Arabia. Email: moizqa12@gmail.com
*Corresponding Author

I. Introduction

The Machine learning is a branch of Artificial Intelligence, and 
the development of techniques, methods, and algorithms is an 
evolving field. These algorithms allow machines to understand 
the processes, assignments, and decisions that are made. In 
Machine learning, classification is supervised approach and 
using the classification techniques helps to classify the data into 
classes so that it can easily be identified. Classification is one of 
the techniques for machine learning that allows to group data to 
extract characteristics and forecast future effects. There are plenty 
of machine learning various algorithms in order to distinguish 
the data into classes. Support Vector Machine is among the most 
popular techniques for constructing models for machine learning. 
With less power to store, it has tremendous accuracy.

Machine learning (ML) algorithms for computational solutions 
can be used to perform efficiently. In recent years, there 

have been plenty of work carried out in the field of Support 
vector machines (SVM). SVM have shown good results in 
classification, generalization performance on many problems.

This paper is organized as follows: Section II presents the 
SVM’s associated work as well as the SVM’s findings and 
Section III presents Support Vector Machine and also covers 
the importance of SVM, SVM’s tuning parameters. In terms of 
the Intrusion Detection Method, Section IV outlines the study 
of different SVM implementations. The SVM challenges are 
outlined in Section V.

Related Work

SVM is one of the powerful supervised methods for solving the 
classification and regression problems and also to provide the 
optimal solution [1] [2].  Through each point, it has the capacity 
to solve even the shortest classification problem. SVM offers 
solutions to problems relating to the fitting of training problems 
within a personal computer or workstation’s storage capacity, 
since SVM does not need any matrix equations and is less likely 
to have issues with numerical formats [2]. SVM is an effective 
tool for target object selection and detection in a medical 
imaging device and microcalcifications [3]. SVM provides 
the best results on application to face detection and reuters 
collection and also give the new technique for implementing 
the SVM algorithm efficiently. SVMs have attractive qualities, 
such as classification accuracy, computational models, simple 
geometric interpretation, and stronger intrusion detection 
efficiency [4]. In classification methods, the performance of the 
SVM depends on understanding the necessary parameters and 
soft-margin coefficient of the kernel function [5]. The previous 
studies showed that, relative to linear SVM algorithms that use 
a single CPU, parallel SVMs can reach large speeds [6]. SVMs 
have been extended to several machine learning tasks. From an 
adequate set of kernel functions, it creates learning frameworks 
and architectures [7]. By introducing the information geometric 
of Riemannian geometry structure induced by the kernel, 
it is possible to improve the SVMs classifier performance 
[7]. With Dynamic Time Warping distance measurement, an 
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improved SVM scheme was used as a feature for the SVM 
Classifier [8] [9]. SVM classifiers are used in many fields for 
text classification [10], facial components detection and tracks 
facial and emotional expression recognition [11] [12]. SVM 
identify sets of genes with a common function using expression 
data analysis [13] and also provides best performance compared 
to Parzen windows and Fisher’s linear discriminant [14]. SVMs 
were used to conduct malfunction categorization [15]. With a 
rule-based decision tree (RBDT), a multi-class support vector 
machine classification model is used to identify the faults of 
water quality sensors due to its reliability and generalization 
[16] [17].

	 II. Support Vector Machine

SVM is a supervised algorithm. The key goals of SVM are 
classification and regression. It’s based on the concept of 
statistics and Vapnik-Chervonenkis dimensions [18] [19] [20]. 
The main purpose is to find the optimal hyperplane by dividing 
the data points into two components and maximizing the 
margin, in this way it solves the classification and regression 
problems. In 2D, hyperplane is line and in 3D it is a plane (also 
called n-dimensional line) [18]. This process contains data from 
training and testing data from research. The algorithm generates 
an optimal hyperplane in training data (supervised learning), 
which categorizes new instances and then the evaluation 
process is carried out from the constructed model. SVM takes 
minimal training area and less processing time and also avoids 
overfitting problems [21] [18]. 

Suppose we have two groups of labels and they are plotted on a 
graph as seen in Fig. 1 below.
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III. Some of the Related Work of SVM in Terms 
of Intrusion Detection System

There are several SVM implementations using datasets. A list 
of the SVM implementations most used as seen in Table I. In 
the Table I, highlights the work carried out during the year 2016 
to 2020.

Table I: Implementations of SVM in Terms of Intrusion Detection System

Challenges Addressed by
Shortcomings related to the accuracy, number of selected features, and execu-
tion time

(Safaldin et al., 2020)

Managing changing data (Jackson, 2002)
Low accuracy in weighted majority voting (WMO) approach (Aburomman & Ibne Reaz, 2016)
Need complex features such as multi-classifier and feature selection in IDS (Yang et al., 2016)

Lead to a long detection delay in the practical application scenario (Gao et al., 2019)
Does not give the detailed information on the structure and characteristics of the 
malware

(Vinayakumar et al., 2019)

False positive rate (da Costa et al., 2019)
Time cost in the data optimization stage and support for online processing (Ren et al., 2019)
Large scale network will require additional infrastructure (Taher et al., 2019)

High dimensionality of problems (Tavara, 2019)
Address severe class imbalance, network traffic variability (Gu & Lu, 2020)
Only a few numbers of works have been designed for detecting anomalies in 
the hosts

(Hosseinzadeh et al., 2020)
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Challenges Addressed by
Curse of dimensionality, Irrelevant features (Hosseinzadeh et al., 2020)
Bolt loosening detection (F. Wang et al., 2020)
Algorithmic complexity (Cervantes et al., 2020)
Development of optimal classifiers for multi-class problems (Cervantes et al., 2020)

The selection of kernel for a problem, Choosing good quality kernel parameters (Nayak et al., 2015)
Speed and size in training and testing, training for very large datasets (Tavara, 2019)
There are no theories concerning how to choose good kernel functions in a data-
dependent way

(Byun & Lee, 2002)

Parallel algorithmic approaches for implementation of SVMs (Tavara, 2019)
Exceedingly high time complexity in DTW computation (Thapanan Janyalikit, 2016)

Conducted a search of the keyword ‘Support Vector Machines’ 
on numerous search engines like IEEE, Google Scholar, Elsevier, 
and Springer and the result shown in the below Table II.

Table II: Searched Keyword Support Vector Machines

Support Vector Machines Results
Google Scholar 2,200,000
IEEE 63,369

Support Vector Machines Results
Elsevier 8,896
Springer 24,737

IV. Challenges of SVM

Many researchers have noted a number of challenges in data 
mining science. Some of these are shown in Table III and need 
further focus from study.

Table III: Implementations of SVM in Terms of Intrusion Detection System

Authors & Year Proposed Model/Method Dataset Used AD FS E. Criteria
(Yang et al., 2016) ICPSO-SVM KDD Cup 1999 Yes Yes FPR, DR
(Rebai, 2016) ML-MKL UCI dataset  COIL-20 Yes Yes Accuracy, TP, TN
(Aburom man & Reaz, 
2017)

LDA-PCA KDD99 Yes Yes Accuracy, FP

(Liang et al., 2019) Clustering-SVM En-
semble Method

NSL-KDD Yes Yes Accuracy, Time, DR, 
FAR

(Safaldin et al., 2020) GWOSVM-IDS NSL-KDD Yes Yes Accuracy, No. of fea-
tures, Time, FR, DR

(H. Wang et al., 2017) LMDRT-SVM Gure-KDD dataset Yes Yes Accuracy
(Al-Qatf et al., 2018) STL-IDS NSL-KDD Yes Yes Accuracy
(Gu et al., 2019) DT-EnSVM NSL-KDD Yes Yes Accuracy, DR, FAR
(Saleh et al., 2019) Hybrid IDS KDD Cup 1999, NSL-

KDD, Kyoto 2006+ 
dataset

Yes Yes DR, Sensitivity, 
Specificity, Precision

(Tao et al., 2018) FWP-SVM-GA KDD Cup 1999 Yes Yes FPR, FNR, DR, Accuracy

(Kabir et al., 2018) OA-LS-SVM KDD Cup 1999 Yes Yes Accuracy, FAR
(Kavitha & Elango, 
2020)

GRRF-FWSVM KDD Cup 1999 Yes Yes Precision Recall F-Score

(Al Shorman et al., 
2020) the number of 
Internet of Things (IoT

GWO-OCSVM N-BaIoT Yes Yes Average detection time, 
TPR, FPR
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Authors & Year Proposed Model/Method Dataset Used AD FS E. Criteria
(Roopa Devi & Sug-
anthe, 2020)

HGWCSO with ETSVM NSL-KDD Yes Yes Precision, Recall, 
Sensitivity, Specificity, 
Accuracy

(Roopa Devi & Sug-
anthe, 2020)

ROC and Confusion 
Matrix

NSL-KDD Yes Yes Accuracy, Error, time

(Mighan & Kahani, 
2020)

hybrid SAE–SVM 
scheme

NSK KDD, Kyoto, 
CDMC 2012, KDD Cup 
1999 and UNB ISCX 
2012

Yes Yes Accuracy, Recall, Time, 
Precision, F-measure

(Kumar & Ramasamy, 
2020)

CSO-SVM algorithm NSL-KDD Yes Yes Accuracy,
Recall
Sensitivity
Specificity
Precision

(Ye et al., 2019) GOA-SVM KDD Cup, different 
datasets

Yes Yes Time, Accuracy

V. Conclusion and Future work

SVM are based on the concept of statistical learning theory.  
In SVM the inputs are placed in 3D space, where the different 
class groups are mapped using the mathematical functions. 
For each parameter SVM represents an optimal solution. 
This SVM algorithm is different from the other algorithms in 
terms working and in mapping the inputs on space. Kernel is 
important parameter on which this SVM works. In this paper, 
we have discussed the related works of SVM and highlighted 
the challenges of SVM, which will be helpful for the researchers 
in their future work. Lots of research work is ongoing to 
extend the scope and increase the performance and accuracy in 
detecting the Intrusions in a network. In future, we will focus on 
SVM applications and comparison of SVM methods with other 
machine learning techniques.
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