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Abstract: Travelers can file claims against Transportation 
Security Administration (TSA) if their baggage are damaged 
or lost during screening. After reviewing the claim, TSA will 
make the decision either approve or deny the claim. The 
data is published by TSA each year. It is an important data 
to understand the baggage damageloss, but it’s underused 
by both researchers and industry. This article explores the 
models with high accuracy and interpretability that can be 
used to predict whether a TSA claim will be approved or 
not. The data columns used in this research include claim 
type, site, claim amount, and disposition as well as airport 
code, airline name, etc. The clustering method is used to 
combine the levels in the factor variables such as airport, 
airline. We first used grid search and cross-validation 
methods to tune a single decision tree. Then a boosted 
tree is built. The generated linear models (GLM) with 3 
different regularization methods are applied to predict the 
probability of claim approval: LASSO, Ridge and Elastic 
Net. The GLM with LASSO is chosen as the final model 
because of its great interpretability and high accuracy.  
The optimized cutoff probability to convert the GLM 
probability to claim approval/deny class is also discussed. 
This research is significant for insurance companies to 
develop travel insurance, for travelers to estimate their 
proper efforts to be invested in the claims, and for TSA 
to better understand the baggage loss and improve their 
management.

Keywords: GLM with regularization, Predictive modeling, 
Tree-based methods, TSA claims data.

I. IntroductIon

The Transportation Security Administration (TSA) was 
established by the Aviation and Transportation Security Act 
(United States Congress, 2001) [1] in response to the 9/11 
terrorist attacks. The main duty of TSA is toprotect the safety of 
the nation’s transportation systems. TSA oversees security and 
inspects items at 450+ airports across the USA. Just in 2015, 
the TSA screened over 2 billion bags and more than 708 million 
passengers (Lowe, 2016) [2]. However, it is unavoidable the 
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bags could be damaged, lost, or stolen during the screening 
process. If this happens, the traveler may make a claim against 
the TSA for the losses for monetary reimbursement. After 
investigating the claim, which may take up to 6 months, the 
TSA will either approve the claim and reimburse the full 
amount, settle the claim for a lower sum, or deny the claim 
altogether. The Homeland Security reported data of every  
claim that happened between 2002 and 2017 on its website 
(Homeland Security, 2021) [3].

Little research has been done on this important data set. Kelly 
and Wang (Kelly and Wang, 2020) [4] mentioned this underused 
data set would be particularly useful to analyze insurance claim 
frequency and severity. They provided the summary statistics 
and correlation analysis of this data; however, no predictive 
analysis is provided. Ciullo (Ciullo, 2017) [5] studied how to 
choose the airline (JetBlue or Delta) with a higher probability 
of approving their travel claims. But they only used basic 
regression and data visualization, which didn’t fully explore 
this valuable dataset. Correia and Wirasinghe (Correia and 
Wirasinghe, 2010) [6] used the regression method studied on 
the data from 62 passengers to evaluate the level of service. 
Its data is not as big as the TSA data we use in this paper. 
Franks (Franks 2007) [7] discussed the law related to the airline 
liability for loss, damage, or delay of passenger baggage, but 
no quantitative discussion is included. The model developed in 
its research is the psychometric scaling technique. Kyseľová 
(Kyseľová, 2010) [8] proposed to use insurance as a tool for 
risk management manage in civil air transport. The author listed 
risks in air transport and evaluated the identified risks using a 
risk matrix. He discussed how travel insurance is significant in 
protecting travelers against baggage loss and property damage 
during travel. This indicates a predictive model for such 
losses would also be helpful for the travel insurance industry. 
However, the research lacks the quantitative analysis to support 
its statements. 

The goal of our research is to construct a model from several 
candidate models that will accurately predict whether a claim 
will be denied or approved by TSA. Compare with the few 
existing research on this data, our research scope is wider. 
First, our research is not limited to one or two airlines, but all 
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the airlines listed in the TSA claim data. Second, our methods 
such as boosted trees and LASSO are more advanced than the 
regression used in previous research. Third, our goal is not only 
to help select the better airline but also to understand the factors 
(including airline, airport, claim type, claim amount, etc.) that 
contribute to the probability of claim approval.

We will first explore the data to see which predictors would 
potentially be good predictors with strong predictive power. 
Then the predictors’ such as Airline Name with lots of levels 
are reduced to a few levels to improve their predictive powers 
against the target variable. The levels are reduced either by 
using clustering or comparing the similarity of the target 
variable statistics among the levels. After the data preprocessing 
is accomplished, 3 different decision trees will be built or 

discussed: single decision tree, boosted tree, random forest. 
Then we consider the generalized linear model (GLM) and 
regularization to predict the probability of claim approval. We 
will also provide a demo of how to use this model.

II. data descrIptIon, VIsualIzatIon, and 
pre-processIng

The data used in this paper range from year 2008 to 2012. 8 
columns are contained in the working data. In original data, 
Disposition can be Approve in Full, Settle, or Deny. We combine 
Approve in Full and Settle to Approve, so the prediction task 
becomes a binary classification task.

table I: data dIctIonary

Variable Name Data Type and Definition Values
Report.Lag A non-negative integer, the days from In-

cident Date to Date Received.
Ranging from 0 to 583 (days).

Airport.Code An airport code is a three- or four-letter 
code used to identify a particular airport.

“BNA”, “NYL” etc. 349 different values in 
total.

Airline.Name String, the name of the airline the claim-
ing passenger took.

“Jet Blue”, “American Airlines” etc. 141 dif-
ferent values in total.

Claim.Type String. There are 5 different claim types. Passenger Property Loss Property Damage 
Employee Loss (MPCECA) Passenger Theft 
Personal Injury.

Claim.Site String. There are 3 different Claim sites. Checked Baggage Checkpoint Others.
Item String. The item claimed. There are hundreds of different categories for 

the predictor Item, including currency, cell 
phones, etc.

Claim.Amount Numerical. The amount of loss claimed 
in dollars.

Ranging from $1 to $5,500,000.

Disposition String. The decision of TSA whether to 
approve or deny the claim.

A binary variable with value “Approve”, or 
“Deny”.

Few rows with missing values are removed from our data and 
only the positive claim amounts are kept. The data contains 7 
independent variables (predictors) and 1 dependent variable 
(target). 

The variable Disposition is the target variable, the other 
variables are in the data are the predictors. 1 is representing 
approve, and 0 for deny. There are a total of 24638 rows of data, 
where 7270 (30%) rows with the target value is 1 and 17368 
(70%) rows with the target value of 0.

We explore the predictors to find out the variables with 
potentially high predictive power. The first predictor we will 
check is Report.Lag, which is defined as DateRecorded minus 
IncidentDate. The histogram of predictor Report.Lag is shown 
in Fig. 1. It follows a right-skewed distribution.

We suspect the longer Report.Lag could lead to a higher deny 
rate because intuitively the older claims are less likely to be 
approved. To investigate this, we plot the histogram and box 
plot by denied claims group and approved claims group. The 

results are listed in Fig. 2 and Fig. 3. It turns out there is no 
significant difference in the values of Report.Lag days between 
denied claims and approved claims. Hence the predictor Report.
Lag may have weak predictive power.

Claim.Site String. There are 3 different 
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We suspect the longer Report.Lag could lead to a 
higher deny rate because intuitively the older claims 
are less likely to be approved. To investigate this, we 
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group and approved claims group. The results are 
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significant difference in the values of Report.Lag days 
between denied claims and approved claims. Hence 
the predictor Report.Lag may have weak predictive 
power. 

 

 
Fig. 1: The Histogram of Predictor Report.Lag

Fig. 1: The Histogram of Predictor Report.Lag
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Fig. 2: The Histogram of Predictor Report.Lag for Approved Claims (Blue) and Denied Claims (Red)

  

 
Fig. 3: The Box Plot of Predictor Report Lag for Approve Claims and Denied Claims 

 
Then the predictor Airport.Code is explored. Its bar 
plot is shown in Fig. 4. Each bar on the x-axis stands 
for an airport. There are hundreds of different airports 
in the data. We need to reduce the number of attributes 
(levels) to improve its predictive power.  

To reduce the levels of variable Airport.Code, we use 
k-means clustering. The inputs of the clustering are 
the mean and median of the target variable in each 
Airport.Code. We set k=5. Then the Airport.Code is 
clustered into 5 groups as shown in Fig. 5. In this way, 
its number of levels is reduced to 5. 
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Fig. 5: The Result of k-Means (k=5) Clustering of Airport.Code using the Target Mean and Median at Each 

Airport. The Same Plot Characters (pch) belong to the Same Cluster
 

Fig. 4: The Bar Plot of Airport.Code

To reduce the levels of variable Airport.Code, we use k-means 
clustering. The inputs of the clustering are the mean and median 
of the target variable in each Airport.Code. We set k=5. Then 
the Airport.Code is clustered into 5 groups as shown in Fig. 5. 
In this way, its number of levels is reduced to 5.
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Fig. 6: The Bar Plot of the Airline.Name Shows the Number of Claims Associated with Each Airline
 

 
Fig. 7: The k-Means (k=5) Clustering Result of Predictor Airline.Name 

 
We process the predictor Airline.Name in the same 
way. Fig. 6 is the bar plot of the number of claims for 
each airline. There are hundreds of different airlines in 
the date. 

Similarly, k-means (k=5) clustering is applied to 
reduce the levels in predictor Airline.Name to 5.     

There are 5 levels in the variable Claim.Type. Its bar 
plot (Fig. 8) below shows majority of the claims are in 
two levels: Passenger Property Loss, Property 
Damage. We consider merging the other 3 levels into 
one of the major levels because these 3 levels don’t 
have enough claim counts. 
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We process the predictor Airline.Name in the same way. Fig. 6 
is the bar plot of the number of claims for each airline. There 
are hundreds of different airlines in the date.

Similarly, k-means (k=5) clustering is applied to reduce the 
levels in predictor Airline.Name to 5.    

There are 5 levels in the variable Claim.Type. Its bar plot 
(Fig. 8) below shows majority of the claims are in two levels: 
Passenger Property Loss, Property Damage. We consider 
merging the other 3 levels into one of the major levels because 
these 3 levels don’t have enough claim counts.

 
Fig. 8: The Bar Plot of Claims Counts in Each Level of Predictor Claim.Type

When looking at the proportion of approval and deny 
of each Claim.Type, we found there is a large 
difference between the two major levels (see Table II). 
The approve ratio is almost twice as higher in 
Property Damage claims (approve ratio 0.436) than in 
Passenger Property Loss claims (approve ratio 0.222). 
We merge the other 3 levels with very few claims to 
the 2 major levels based on their distance in approved 
proportion. Therefore, Passenger Theft, Person Injury 
are merged with Passenger Property Loss, since they 
also have a low approval proportion. The Employee 
Loss (MPCECA) is merged with Property Damage. 

We set the Passenger Property Loss as the based level 
since it contains the most claim counts. 

In the predictor Claim Site, the Checkpoint claims 
category (level) hasa much higher proportion 
(approve ratio) than the other levels. Thus, we 
combine the level Other with the Checked Baggage 
because they both have low approval ratios. We set 
the Checked Baggage as the base level of the predictor 
Claim Site.

TABLE II: THE APPROVED, DENIED, TOTAL CLAIM COUNTS, AND PROPORTION OF APPROVED CLAIMS IN EACH 

LEVEL OF PREDICTOR CLAIM TYPE 
Claim.Type Approve Deny Total Approve Rate 

Employee Loss (MPCECA) 11 7 18 0.3889 
Passenger Property Loss 12569 3589 16158 0.2221 
Passenger Theft 17 3 20 0.1500 
Personal Injury 46 21 67 0.3134 
Property Damage 4725 3650 8375 0.4358 

TABLE III: THE APPROVED, DENIED, TOTAL CLAIM COUNTS, AND PROPORTION OF APPROVED CLAIMS IN EACH 

LEVEL OF PREDICTOR CLAIM SITE 
Claim.Site Approve Deny Total Approve Rate 

Checked Baggage 15355 4619 19974 0.2313 
Checkpoint 1993 2650 4643 0.5708 
Other 20 1 21 0.0476 

 

Fig. 8: The Bar Plot of Claims Counts in Each Level of 
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When looking at the proportion of approval and deny of each 
Claim.Type, we found there is a large difference between the 
two major levels (see Table II). The approve ratio is almost 
twice as higher in Property Damage claims (approve ratio 
0.436) than in Passenger Property Loss claims (approve ratio 
0.222). We merge the other 3 levels with very few claims to the 
2 major levels based on their distance in approved proportion. 
Therefore, Passenger Theft, Person Injury are merged with 
Passenger Property Loss, since they also have a low approval 
proportion. The Employee Loss (MPCECA) is merged with 
Property Damage.

We set the Passenger Property Loss as the based level since it 
contains the most claim counts.

In the predictor Claim Site, the Checkpoint claims category 
(level) has a much higher proportion (approve ratio) than the 
other levels. Thus, we combine the level Other with the Checked 
Baggage because they both have low approval ratios. We set the 
Checked Baggage as the base level of the predictor Claim Site.

table II: the approVed, denIed, total claIm counts, and 
proportIon of approVed claIms In each leVel of predIctor 

claIm type

Claim.Type Approve Deny Total Approve Rate
Employee Loss 
(MPCECA)

11 7 18 0.3889

Passenger Prop-
erty Loss

12569 3589 16158 0.2221

Claim.Type Approve Deny Total Approve Rate
Passenger Theft 17 3 20 0.1500
Personal Injury 46 21 67 0.3134
Property Dam-
age

4725 3650 8375 0.4358

table III: the approVed, denIed, total claIm counts, and 
proportIon of approVed claIms In each leVel of predIctor 

claIm sIte

Claim.Site Approve Deny Total Approve Rate
Checked Baggage 15355 4619 19974 0.2313
Checkpoint 1993 2650 4643 0.5708
Other 20 1 21 0.0476

Another speculation is the higher Claim Amount can 
easier lead to deny. To verify this, we plot the log 
(Claim.Amount) vs Disposition by a boxplot. The 
result validated our guess. From the boxplot box, the 
denied claims havesignificantly higher average claim 
amounts. This indicates the predictor Claim Amount 
has strong predictive power. 

There are 1873 different typesof Items, including 
currency, cell phones, etc. It will produce poor 
prediction accuracy if we directly use them without 
combining them into a few major categories. We use 
k-means clusteringsimilar towhat is used on 
Airline.Name to combine the categories into 5 levels, 
as shown in Table IV. For instance, Item I4 contains 
8379 records and 277 non-repeated values (levels), 
including Bicycles, Cameras, Clothing, etc. 

III. CLASSIFICATION TREE 

A. Single Decision Tree 

We first use the trial-and-error method (Badriyah et 
al., 2014) (Shekar and Dagnew, 2019) to tune the 
single decision tree. Two parameters: maxdepth and 
complexity parameter (cp) (Therneau et al., 2015) 
will be selected in this process. The maxdepth defines 
the maximum depth of the decision tree. If the tree is 
too shallow, it would not be sophisticated enough to 
produce high accuracy. On the other hand, if the tree is 
too deep, it would be overfitting. So, we need to select 
the proper value for the maximum depth of the tree. 
The cp defines the minimum improvement of the 
model required to split a node (Myles, et al., 2004). A 
smaller cp tends to grow a tree with more branches. 
Again, the bias-variance tradeoff is happening here.In 
the following steps, we will search for maxdepth 
starting from 6, cp from 0.001, then try different 
values, see if the model is overfitting or under-fitting: 

 
Fig. 9: The Box Plot Shows the Distribution of the Claim Amount in Approved Claims and Denied Claims 

 
TABLE IV: THE APPROVED, DENIED, TOTAL CLAIM COUNTS, AND PROPORTION OF APPROVED CLAIMS IN 5 LEVELS 

OF PREDICTOR CLAIM SITE CLUSTERED BY K-MEANS CLUSTERING 
Item Approve Deny Total Approve 

Rate 
I4 7110 1269 8379 0.1515 
I2 2729 32 2761 0.0116 
I5 7402 3331 10733 0.3104 
I3 52 2563 2615 0.9801 
I1 75 75 150 0.5000 

 

Fig. 9: The Box Plot Shows the Distribution of the Claim 
Amount in Approved Claims and Denied Claims

table IV: the approVed, denIed, total claIm counts, and 
proportIon of approVed claIms In 5 leVels of predIctor 

claIm sIte clustered by K-means clusterIng

Item Approve Deny Total Approve Rate
I4 7110 1269 8379 0.1515
I2 2729 32 2761 0.0116
I5 7402 3331 10733 0.3104
I3 52 2563 2615 0.9801
I1 75 75 150 0.5000

Another speculation is the higher Claim Amount can easier 
lead to deny. To verify this, we plot the log (Claim.Amount) 
vs Disposition by a boxplot. The result validated our guess. 
From the boxplot box, the denied claims have significantly 
higher average claim amounts. This indicates the predictor 
Claim Amount has strong predictive power. There are 1873 
different types of Items, including currency, cell phones, etc. It 
will produce poor prediction accuracy if we directly use them 
without combining them into a few major categories. We use 
k-means clustering similar to what is used on Airline. Name to 
combine the categories into 5 levels, as shown in Table IV. For 
instance, Item I4 contains 8379 records and 277 non-repeated 
values (levels), including Bicycles, Cameras, Clothing, etc.
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III. classIfIcatIon tree

A. Single Decision Tree

We first use the trial-and-error method (Badriyah et al., 2014; 
Shekar and Dagnew, 2019) [9] [10] to tune the single decision 
tree. Two parameters: maxdepth and complexity parameter (cp) 
(Therneau et al., 2015) [11] will be selected in this process. 
The maxdepth defines the maximum depth of the decision tree. 
If the tree is too shallow, it would not be sophisticated enough 
to produce high accuracy. On the other hand, if the tree is too 
deep, it would be overfitting. So, we need to select the proper 
value for the maximum depth of the tree. The cp defines the 
minimum improvement of the model required to split a node 
(Myles et al., 2004) [12]. A smaller cp tends to grow a tree with 
more branches. Again, the bias-variance tradeoff is happening 
here. In the following steps, we will search for maxdepth 
starting from 6, cp from 0.001, then try different values, see if 
the model is overfitting or under-fitting:

 ● First, at maxdepth = 6, cp = 0.001, the AUC is 0.7884 
for the test, 0.7842 for the training, indicating overfitting 
may not be a problem.

 ● Then we try to reduce the complexity of the tree by 
setting maxdepth = 3, cp = 0.001, the AUC is 0.7834 for 
the test, 0.7876 for the training. The AUC almost doesn’t 
change, but the tree is less complicated, which makes it 
more robust when predicting new test data.

 ● Then we try maxdepth = 2, cp = 0.001, the AUC is 0.6741 
for the test, 0.6763 for the training. The AUC drops. Thus 
we will stay at maxdepth = 3.

 ● Adjust the parameter cp. We try maxdepth = 3, cp = 0.01, 
the AUC is 0.7834 for the test, 0.7876 for the training. 
Try maxdepth = 3, cp = 0.05, the AUC is 0.6741 for the 
test, 0.6763 for the training. Therefore, maxdepth = 3, 
cp = 0.01 is the best, since cp = 0.01 corresponds to the 
least complex model that has a high AUC. This model 
produced the following tree.

Next, we use another method: the cross-validation method to 
tune the parameters of the decision tree (Alawad, Zohdy and 
Debnath, 2018) [13]. In this method, the data is split into k 
folds. In each cross-validation (CV), k-1 folds are the training 
data, the other 1-fold is left as the validation data. Each time 
the validation fold is changed until all the k folds have been 
served as the validation data for once. The algorithm will try 
each value of parameter cp in the grid list to do a k fold CV. The 
best cp is the one with the highest average Accuracy in the k 
fold CV. We use the cp searching grid from 0 to 0.01 with step 
size 0.0005 (20 cp values) and try different maxdepth parameter 
values less than 6. If the tree depth is greater than 6, the tree has 
a high risk of overfitting. The following are the cross-validation 
results at different maxdepth values:

 ● When maxdepth = 6, AUC is 0.7842 for the training, 
0.7884 for the test. The depth of the produced tree is 4, 
which has not reached the maxdepth.

 ● To reduce the model complexity, we try maxdepth = 3, its 
AUC is 0.7834 for the training, 0.7876 for the test. Since 
this tree is less complicated than maxdepth = 6 and AUC 
is almost the same, this tree is better.

 ● Then try maxdepth = 2, the AUC is 0.6741 for the training, 
0.6763 for the test. Therefore, maxdepth = 3 is the best.

 
Fig. 10: The Decision Tree Whose Parameters are Tuned by the Trial-and-Error Method 

 
Fig. 11: The Decision Tree Whose Parameters are Tuned by the Cross-Validation Method 
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Fig. 11: The Decision Tree Whose Parameters are Tuned by the Cross-Validation Method 

 

Fig. 11: The Decision Tree Whose Parameters are Tuned by 
the Cross-Validation Method

The best model selected by both methods is the same model. 
We recommend this model remain in consideration for the final 
model.

According to the nodes of the tree, the variables that are used in 
making splits in this model are:

 ● Item
 ● Claim.Site
 ● Airline.Name
 ● Claim.Type

We can interpret this tree as follows:
 ● If the Item is in group I4, then the model predicts the 

claim will be Approved.
 ● Otherwise, if Claim.Site is Checked Baggage and Airline.

Name is in group e, then the model predicts the claim will 
be denied. If Airline.Name is in not in group e, then it will 
be approved.
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 ● If Item is not in group 4, Claim.Site is not Checked 
Baggage, Claim.Type is Passenger Property Loss, then 
the model predicts the claim will be denied; if Claim.
Type is not Passenger Property Loss, then it is predicted 
it will be approved.

Based on the tree, we recommend one interaction between the 
predictors to be used when constructing a generalized linear 
model (GLM) later. From the selected tree, we observe that 
when the value of Claim.Site is Checked Baggage, the Claim.
Type doesn’t matter in terms of predicting the target, while if 
Claim.Site is value Other, the variable Claim.Type matters. We 
recommend the interaction between Claim.Site and Claim.Type 
to be used later in GLM.

B. Boosting and Bagging Method

Boosted tree (Chen, 2014) [14] algorithm is a boosting method 
(Schapire, 1999) [15]. In this algorithm, a sequence of trees will 
be built. The latter tree is built to fit and reduce the error of the 
previous tree. This sequence of trees is dependent on each other. 
This iterative process will generate an ensemble model that is 
more accurate than the connected individual tree.

The random forest (Biau and Scornet, 2016) [16] algorithm is a 
bagging method. Unlike the dependencies of individual trees in 
a boosted tree method, in the bagging method such as random 
forest, the individual trees are independent. In this algorithm, 
a “forest” of trees will be generated, and the final result is the 
average of the result in each tree. In a random forest, each tree 
has an equal one “vote” to the final result. While in the boosted 
tree, the tree with more prediction accuracy has a higher weight 
in the voting for the final result. The boosted tree can reduce 
the bias. The random forest can reduce the variance of the 
prediction, thus reducing the overfitting risk.

The AUC of the boosted tree on the test data is 0.8694, which 
is promising. 

The boosted tree algorithm also provides the variable 
importance, which is calculated based on how often a variable 
is selected to split the tree nodes (Kuhn, 2012; Greenwell, 
Boehmke and Gray, 2020) [17] [18]. The more often a variable 
is selected, the more important it is. The variable importance 
plot of our data according to the boosted tree is provided below.

The best model selected by both methods is the same 
model. We recommend this model remain in 
consideration for the final model. 

According to the nodes of the tree, the variables that 
are used in making splits in this model are: 

 Item 
 Claim.Site 
 Airline.Name 
 Claim.Type 

We can interpret this tree as follows: 

 If the Item is in group I4, then the model predicts 
the claim will be Approved. 

 Otherwise, if Claim.Site is Checked Baggage and 
Airline.Name is in group e, then the model 
predicts the claim will be denied. If Airline.Name 
is in not in group e, then it will be approved. 

 If Item is not in group 4, Claim.Site is not 
Checked Baggage, Claim.Type is Passenger 
Property Loss, then the model predicts the claim 
will be denied; if Claim.Type is not Passenger 
Property Loss, then it is predicted it will be 
approved. 

Based on the tree, we recommend one interaction 
between the predictors to be used when constructing a 
generalized linear model (GLM) later. From the 
selected tree, we observe that when the value of 
Claim.Site is Checked Baggage, the Claim.Type 
doesn’t matter in terms of predicting the target, while 
if Claim.Site is value Other, the variable Claim.Type 
matters. We recommend the interaction between 
Claim.Site and Claim.Type to be used later in GLM. 

B. Boosting and Bagging Method 

Boosted tree (Chen, 2014) algorithm is a boosting 
method (Schapire, 1999). In this algorithm, a 
sequence of trees will be built. The latter tree is built 
to fit and reduce the error of the previous tree. This 
sequence of trees isdependenton each other. This 
iterative process will generate anensemble model that 
is more accurate than the connected individual tree. 

The random forest (Biau and Scornet, 2016) algorithm 
is a bagging method. Unlike the dependencies of 
individual trees in aboosted tree method, in the 
bagging method such asrandom forest, the individual 
trees are independent. In this algorithm, a “forest” of 
trees will be generated, and the final result is the 
average of the result in each tree. In a random forest, 
each tree has an equal one “vote” to the final result. 
While in the boosted tree, the tree with more 
prediction accuracy has a higher weight in the voting 
forthe final result. The boosted tree can reduce the 
bias.The random forest can reduce the variance of the 
prediction, thus reducing the overfitting risk. 

The AUC of the boosted tree on the test data is 0.8694, 
which is promising.  

The boosted tree algorithm also provides the variable 
importance, which is calculated based on how often a 
variable is selected to split the tree nodes (Kuhn, 2012) 
(Greenwell, Boehmke and Gray, 2020). The more 
often a variable is selected, the more important it is. 
The variable importance plot of our data according to 
the boosted tree is provided below. 

 
Fig. 12: The Variable Importance Plot of the Boosted 

Tree Algorithm 
The variable importance provides more 
interpretability to the complicated machine learning 
algorithm and helps us understand what’s going on in 
the data. In Fig. 12, the variable importance is scaled 
to 100, which measures the relative importance of 
each variable. The more important variables usually 
appear earlier or more frequently in the tree splitting. 
It is clear the variables Item = 4, Airline.Name = e, 
Claim.Site and Claim.Amount are more important 
than other variables (or levels). The majority of these 

Fig. 12: The Variable Importance Plot of the Boosted Tree 
Algorithm

The variable importance provides more interpretability to 
the complicated machine learning algorithm and helps us  
understand what’s going on in the data. In Fig. 12, the variable 
importance is scaled to 100, which measures the relative 
importance of each variable. The more important variables 
usually appear earlier or more frequently in the tree splitting. 
It is clear the variables Item = 4, Airline.Name = e, Claim.Site 
and Claim.Amount are more important than other variables 
(or levels). The majority of these variables of importance are 
also shown in the single decision tree we previously built. The 
Claim.Amount is important in this list but not shown in the 
single decision tree previously built. This may be due to the fact 
the boosting method allows the variables that are overshadowed 
in the single tree to be fit to the errors made by other variables.

C. Compare the Single Tree and Boosted Tree

We compare the single tree model and the boosted tree to 
recommend a tree model. The ROC and AUC are used as the 
metrics to measure the prediction accuracy. These two metrics 
are interpreted as follows. The tree method returns a probability 
value of each class before doing classification. For example, in 
the single tree selected in Fig. 11, the second leaf node from 
the right has a 0.65 probability of class 1. If the probability 
cut-off is 0.5, then the data in this bucket is classified as class 
1. If the probability cut-off is 0.7, then they are classified as 
class 0. Therefore, the varying of probability cut-off changes 
the specificity and sensitivity. The ROC curve shows the 
relationship between Specificity vs Sensitivity when the cut-off 
probability changes from 0 to 1. The AUC is the area under the 
ROC curve, which measures the classification accuracy with 
a value ranging from 0 to 1, and larger AUC indicates better 
accuracy.

The AUC of the selected single tree on the test data is 0.7876. 
The AUC of the boosted tree on test data is 0.8694. The ROC 
curves are provided below, where the above figure is from the 
single tree, the below figure is for boosted tree.

variables of importance are also shown in the single 
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is important in this list but not shown in the single 
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fact the boosting method allows the variables that are 
overshadowed in the single tree to be fit to the errors 
made by other variables. 

C. Compare the Single Tree and Boosted 
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We compare the single tree model and the boosted 
tree to recommend a tree model. The ROC and AUC 
are used as the metrics to measure the prediction 
accuracy. These two metrics are interpreted as follows. 
The tree method returns a probability value of each 
class before doing classification. For example, in the 
single tree selected in Fig. 11, the second leaf node 

from the right has a 0.65 probability of class 1. If the 
probability cut-off is 0.5, then the data in this bucket is 
classified as class 1. If the probability cut-off is 0.7, 
then they are classified as class 0. Therefore, the 
varying of probability cut-off changes the specificity 
and sensitivity. The ROC curve shows the relationship 
between Specificity vs Sensitivity when the cut-off 
probability changes from 0 to 1. The AUC is the area 
under the ROC curve, which measures the 
classification accuracy with a value ranging from 0 to 
1, and larger AUC indicates better accuracy. 

The AUC of the selected single tree on the test data is 
0.7876. The AUC of the boosted tree on test data is 
0.8694. The ROC curves are provided below, where 
the left figure is from the single tree, the right figure is 
for boosted tree. 

 
Fig. 13: The ROC Curve of the Single Tree Model (Left) and Boosted Tree Model (Right) 

 
The advantage of a single tree is more interpretability 
and easier to understand, compared with the boosted 
tree. The splitting rule of the single tree is direct and 
clear to the decision-makers. The boosted tree is more 
of a “black box“ model, where the variables are input, 
and the prediction is the output, the processes between 
are hard to explain. 

In this research, we focus more on prediction accuracy 
rather than interpretation. The boosted tree has 
significantly higher AUC than the single tree 

algorithms considered above, therefore we 
recommend the boosted tree model. 

IV. GENERALIZED LINEAR MODEL 

The next model we will consider is the generalized 
linear model (GLM) with regularization, because it 
can reveal more statistical structure of the data and its 
prediction accuracy is decent. The idea of GLM is to 
regress the probability that a claim will be approved 
using the predictors. The purpose of regularization is 
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variables of importance are also shown in the single 
decision tree we previously built. The Claim.Amount 
is important in this list but not shown in the single 
decision tree previously built. This may be due to the 
fact the boosting method allows the variables that are 
overshadowed in the single tree to be fit to the errors 
made by other variables. 

C. Compare the Single Tree and Boosted 

Tree 

We compare the single tree model and the boosted 
tree to recommend a tree model. The ROC and AUC 
are used as the metrics to measure the prediction 
accuracy. These two metrics are interpreted as follows. 
The tree method returns a probability value of each 
class before doing classification. For example, in the 
single tree selected in Fig. 11, the second leaf node 

from the right has a 0.65 probability of class 1. If the 
probability cut-off is 0.5, then the data in this bucket is 
classified as class 1. If the probability cut-off is 0.7, 
then they are classified as class 0. Therefore, the 
varying of probability cut-off changes the specificity 
and sensitivity. The ROC curve shows the relationship 
between Specificity vs Sensitivity when the cut-off 
probability changes from 0 to 1. The AUC is the area 
under the ROC curve, which measures the 
classification accuracy with a value ranging from 0 to 
1, and larger AUC indicates better accuracy. 

The AUC of the selected single tree on the test data is 
0.7876. The AUC of the boosted tree on test data is 
0.8694. The ROC curves are provided below, where 
the left figure is from the single tree, the right figure is 
for boosted tree. 
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The advantage of a single tree is more interpretability 
and easier to understand, compared with the boosted 
tree. The splitting rule of the single tree is direct and 
clear to the decision-makers. The boosted tree is more 
of a “black box“ model, where the variables are input, 
and the prediction is the output, the processes between 
are hard to explain. 

In this research, we focus more on prediction accuracy 
rather than interpretation. The boosted tree has 
significantly higher AUC than the single tree 

algorithms considered above, therefore we 
recommend the boosted tree model. 
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The next model we will consider is the generalized 
linear model (GLM) with regularization, because it 
can reveal more statistical structure of the data and its 
prediction accuracy is decent. The idea of GLM is to 
regress the probability that a claim will be approved 
using the predictors. The purpose of regularization is 

Fig. 13: The ROC Curve of the Single Tree Model (Above) 
and Boosted Tree Model (Below)

The advantage of a single tree is more interpretability and easier 
to understand, compared with the boosted tree. The splitting 
rule of the single tree is direct and clear to the decision-makers. 
The boosted tree is more of a “black box“ model, where 
the variables are input, and the prediction is the output, the 
processes between are hard to explain.

In this research, we focus more on prediction accuracy rather 
than interpretation. The boosted tree has significantly higher 
AUC than the single tree algorithms considered above, therefore 
we recommend the boosted tree model.

IV. generalIzed lInear model

The next model we will consider is the generalized linear model 
(GLM) with regularization, because it can reveal more statistical 
structure of the data and its prediction accuracy is decent. The 
idea of GLM is to regress the probability that a claim will be 
approved using the predictors. The purpose of regularization 
is for variable selection: to remove the less important features 
while keeping the important features.

Before we do the regression, we convert Claim.Amount $500 
to the level “lowAm”. The level “mediumAm” is for Claim.
Amount in ($500, $1500], and “highAm” are the claims with 
Claim.Amount > $1500.We do such discretization of the Claim.
Amount is for 2 reasons: 

 ● In linear models, Y =  β . X. This means there is a single 
constant  β for all the values in one predictor to describe 
its constant effect on the target. Because the variable 
Claim. Amount is highly right-skewed as we can see from 
the boxplot below (Fig. 14), with mostly small values 
and some extremely large values. Thus, the existence of 
extremely large values, the effect of the lowest values 
would be ignored.

 ● By discretizing this variable, it gives us more flexibility. 
After binarization, the 3 levels will be treated as 3 
variables. Thus, each of the levels will have a  β coefficient 

associated with them. It can describe the different effects 
of this predictor at the low, medium, high level.

Therefore, discretize the continuous variable Claim.Amount to 
“lowAm”, “mediumAm”, “highAm” makes it more predictive 
and more interpretative than using its original numerical 
values. After converting, we get 18538 “lowAm” values, 3994 
“mediumAm” and 2106 “highAm”.

for variable selection: to remove the less important 
features while keeping the important features. 

Before we do the regression, we convert 
Claim.Amount  ≤ $500 to the level “lowAm”. The 
level “mediumAm” is for Claim.Amount in ($500, 
$1500], and “highAm” are the claims with 
Claim.Amount > $1500.We do such discretization of 
the Claim.Amount is for 2 reasons:  
 In linear models, 𝑌𝑌 = 𝛽𝛽 ∙ 𝑋𝑋. This means there is a 

single constant 𝛽𝛽  for all the values in one 
predictor to describe its constant effect on the 
target. Because the variable Claim.Amount is 
highly right-skewed as we can see from the 
boxplot below (Fig. 14), with mostly small values 
and some extremely large values. Thus, the 
existence of extremely large values, the effect of 
the lowest values would be ignored. 

 By discretizing this variable, it gives us more 
flexibility. After binarization, the 3 levels will be 
treated as 3 variables. Thus, each of the levels 
will have a 𝛽𝛽 coefficient associated with them. It 
can describe the different effects of this predictor 
at the low, medium, high level. 

Therefore, discretize the continuous variable 
Claim.Amount to “lowAm”, “mediumAm”, “highAm” 
makes it more predictive and more interpretative than 
using its original numerical values. After converting, 
we get 18538 “lowAm” values, 3994 “mediumAm” 
and 2106 “highAm”. 

 
Fig. 14: The Boxplot of the Predictor 

Claim.Amount 
In the GLM, we need to select a distribution of the 
target variable and the link function to map the 

nonlinear relationship to linear. Because the target is a 
binary variable, the only distribution that works here 
is binomial. We select the logit function as the link 
function, which is the default link for binomial GLM. 
We run three types of regularization with GLM, they 
are LASSO (Zou, 2006), ridge (Segerstedt, 1992), and 
Elastic Net (Zou and Hastie, 2005; Hastie et al., 2021). 
When running the model on the test data, we got AUC 
= 0.8575 for LASSO, 0.8694 for the ridge, 0.8682 for 
Elastic Net (alpha = 0.5). There is not much difference 
in AUC, but LASSO has the potential advantage of 
removing more features to build a simple model. So, 
we choose LASSO. Table V listed the GLM 
coefficients using LASSO. 

4 variables have 0 coefficient and the variable 
Airport.CodeD has a small coefficient, so we can 
remove it. All the other variables are selected 
including the interaction term (in the last row of Table 
V). 

The four variables selected in the session 3.1 single 
decision tree are Item, Claim.Site, Airline.Name, 
Claim.Type. They are all selected in the LASSO GLM 
here, and three extra variables are included: Airport, 
Claim.Amount, the interaction term between 
Claim.Type and Claim.Site. The variable Item is 
important in the single decision tree, which also have 
large coefficients here in the LASSO GLM. This 
confirms the correctness of both models. Because of 
the limited depth of the tree, it's no surprise that the 
single decision tree didn't include the variables like 
Airpot, Claim.Amount. 

The boosted tree in session 3.2 listed ItemI4 as the 
most important feature, which confirms the largest 
coefficients of ItemI4 in the LASSO GLM. Other than 
ItemI4, the boosted tree selected Airline.Name, 
Claim.Site, Claim.Type, Claim.Amount as top 
important features and they are also selected as 
important features in LASSO GLM. The Airport is 
not listed as the top important feature in the boosted 
tree, while in the LASSO GLM, it is more important 
than the Claim.Type. 

The LASSO GLM requires binarization of the 
categorical variable. It treats each level of the 

Fig. 14: The Boxplot of the Predictor Claim.Amount

In the GLM, we need to select a distribution of the target variable 
and the link function to map the nonlinear relationship to linear. 
Because the target is a binary variable, the only distribution that 
works here is binomial. We select the logit function as the link 
function, which is the default link for binomial GLM. We run 
three types of regularization with GLM, they are LASSO (Zou, 
2006) [19], ridge (Segerstedt, 1992) [20], and Elastic Net (Zou 
and Hastie, 2005; Hastie et al., 2021) [21] [22]. When running 
the model on the test data, we got AUC = 0.8575 for LASSO, 
0.8694 for the ridge, 0.8682 for Elastic Net (alpha = 0.5). There 
is not much difference in AUC, but LASSO has the potential 
advantage of removing more features to build a simple model. 
So, we choose LASSO. Table V listed the GLM coefficients 
using LASSO.

4 variables have 0 coefficient and the variable Airport.CodeD 
has a small coefficient, so we can remove it. All the other 
variables are selected including the interaction term (in the last 
row of Table V).

The four variables selected in the session 3.1 single decision  
tree are Item, Claim.Site, Airline.Name, Claim.Type. They 
are all selected in the LASSO GLM here, and three extra 
variables are included: Airport, Claim.Amount, the interaction 
term between Claim.Type and Claim.Site. The variable Item 
is important in the single decision tree, which also have large 
coefficients here in the LASSO GLM. This confirms the 
correctness of both models. Because of the limited depth of the 
tree, it’s no surprise that the single decision tree didn’t include 
the variables like Airpot, Claim.Amount.

The boosted tree in session 3.2 listed ItemI4 as the most 
important feature, which confirms the largest coefficients of 
ItemI4 in the LASSO GLM. Other than ItemI4, the boosted tree 
selected Airline.Name, Claim.Site, Claim.Type, Claim.Amount 
as top important features and they are also selected as important 
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features in LASSO GLM. The Airport is not listed as the top 
important feature in the boosted tree, while in the LASSO 
GLM, it is more important than the Claim.Type.

The LASSO GLM requires binarization of the categorical 
variable. It treats each level of the categorical variable as a 
separate variable. For instance, variable Item has 5 levels: I1, 
I2, … I5. In LASOO GLM, the variable Item is binarized into 
4 variables ItemI1, …, ItemI4. If they have 0 values, then it 
refers to the 5th level (the level with the least frequency in the 
data). Each variable corresponds to one level (or category) of 
the original variable. This process is also called making dummy 
variables. Doing so, there are advantages and disadvantages. 
The advantages of using binarized variables:

 ● It gives us more flexibility. We would like to have the 
opportunity to keep some levels of one variable while 
removing the other levels. Without binarization, the 
algorithm will remove or keep all levels entirely.

 ● Similarly, different levels of the same variable could have 
different effectson the target variable. If we treat it as one, 
this difference could not be resented. The binarization 
allows us to attach different regression coefficients to 
them.

The disadvantage of using binarized variables:
 ● It increases the computational burden. Because each level 

is treated as one variable after binarization, it could take 
more time to run the model.

table V: the regressIon coeffIcIents usIng GLM wIth lasso

(Intercept) .
Report.Lag .
Airport.CodeE .
Airport.CodeC 0.1570

Airport.CodeB -0.1066

Airport.CodeD -0.0203

Airline.Named .

Airline.Namee 2.1463

Airline.Namec .

Airline.Namea -0.0591

Claim.TypeProperty Damage 0.1067

Claim.SiteCheckpoint 0.5818

ItemI2 -0.9589

ItemI1 0.2795

ItemI4 2.3836

ItemI3 0.1097

Claim.Amount_cutmediumAm -0.1529

Claim.Amount_cuthighAm -0.1934
Claim.
TypePropertyDamage:Claim.
SiteCheckpoint 0.9846

V. fInal model selectIon

Now we select a final model based on the models we have 
built: single decision tree, boosted tree, and LASSO GLM. 
We recommend LASSO GLM as the final model. Because it is 
easier to interpret with straight forward statistical meaning with 
its regression coefficients. Its AUC of 0.8575 is also decent, 
higher than the single decision tree AUC of 0.7876, though 
slighter lower than boosted tree AUC of 0.8694. Also, the 
GLM can be implemented in a simple tool such as an Excel 
spreadsheet, while it is difficult to do so for the boosted tree.

The LASSO GLM by default, classifies the regressed  
probability greater than 0.5 as one class, lower than 0.5 as 
another class. That is, the cutoff probability is 0.5. The selection 
of cutoff values changes the classification results. The cutoff 
adjusts the tradeoff between the false positive and false negative. 
In practice, the profit/loss could be different in making each 
type of prediction in true positive (TP), true negative (TN), false 
positive (FP), false negative (FN). If our goal is to maximize the 
overall profit, we can optimize the cutoff probability. We will 
demonstrate how to do it on this data. Without losing generality, 
assuming for each TP prediction, we get a profit of $50. The 
actual profit loss number should be determined by the business. 
If it is FP prediction, we get a loss of $25. For the TN or FN 
prediction, we get a loss of $5. Therefore, the total profit is 
50*TP-25*FP-5*(TN+FN). If the cutoff changes, the confusion 
matrix will change, resulting in total profit change, because the 
values of TP, FP, TN, FN will change with cutoff probability. 
We tried different cutoff values and calculated their profitsas 
listed in Table VI. We found out when cutoff = 0.23, the total 
profit can be maximized. Table VII lists the confusion matrix at 
cutoff = 0.23.

To demonstrate how to use the selected final model, we explain 
a demo. Table VIII contains 1 base case (the 1st row) and 7 
other variation cases (the other 7 rows) from the base case. 
To do a prediction, we need 7 pieces of information in the 
input, including the Report.Lag, Aiport.Code, Claim.Amount 
etc. We use them to predict whether the TSA will deny or 
approve this case. The model used is the LASSO GLM with 
the cutoff = 0.23 to maximize the total profit. The algorithm 
returns the probability of approval, and the probability above 
0.23 is classified as Approve, otherwise classified as Deny. 
The probability and prediction results are listed in the last two 
columns of the table. The probability is calculated using the 
coefficients in Table V to multiply the 7 variables in the input 
(after necessary preprocessing including binarization). This can 
be implemented in a spreadsheet tool that is easy for the related 
industry to use.

In the second row of Table VIII, the case has one variation from 
the base case, which is changing from the Report.Lag from 17 to 
1. The classification probability doesn’t change. This is because 
the coefficient is 0 for variable Report.Lag in the GLM with 
LASSO features selection in Table V. So, the value of Report.
Lag doesn’t matter. As another example, the coefficients of 
Claim.Site = Checkpoint is 0.5818. When the value of Claim.
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Site changes from “Checked Baggage” to “Checkpoint”, the 
regression coefficient is changed from 0 to 9.5818, resulting 
in the classification probability being increased from 0.1741 to 
0.2738. 

table VI: the oVerall profIt benefItIng from our 
algorIthm by selectIng the dIfferent cutoff probabIlIty  

of the lasso glm

Cutoff Profit
0.20 25480
0.23 32195 (Best)
0.24 31480
0.25 30810

Cutoff Profit
0.26 29765
0.30 29810
0.50 26850
0.60 14290

table VII: confusIon matrIx at cutoff = 0.23

Reference
Deny Approve

Prediction
Deny 4329 632
Approve 860 1570

table VIII: a demo to explaIn how to use the  
selected model

Report.Lag Airport.
Code

Airline.
Name

Claim.Type Claim.Site Item Claim.
Amount

Probability Prediction

17 MDW Delta Air 
Lines

Passenger Prop-
erty Loss

Checked 
Baggage

Clothing - 
Shoes; belts; 
accessories; 
etc.

65 0.1741 Deny

1 MDW Delta Air 
Lines

Passenger Prop-
erty Loss

Checked 
Baggage

Clothing - 
Shoes; belts; 
accessories; 
etc.

65 0.1741 Deny

17 ABQ Delta Air 
Lines

Passenger Prop-
erty Loss

Checked 
Baggage

Clothing - 
Shoes; belts; 
accessories; 
etc.

65 0.1741 Deny

17 MDW Air Canada Passenger Prop-
erty Loss

Checked 
Baggage

Clothing - 
Shoes; belts; 
accessories; 
etc.

65 0.1741 Deny

17 MDW Delta Air 
Lines

Property Dam-
age

Checked 
Baggage

Clothing - 
Shoes; belts; 
accessories; 
etc.

65 0.1899 Deny

17 MDW Delta Air 
Lines

Passenger Prop-
erty Loss

Checkpoint Clothing - 
Shoes; belts; 
accessories; 
etc.

65 0.2738 Approve

17 MDW Delta Air 
Lines

Passenger Prop-
erty Loss

Checked 
Baggage

Locks 65 0.0747 Deny

17 MDW Delta Air 
Lines

Passenger Prop-
erty Loss

Checked 
Baggage

Clothing - 
Shoes; belts; 
accessories; 
etc.

3000 0.1480 Deny

VI. summary and dIscussIon

In this paper, we used the TSA claim data to construct a 
model that will accurately predict if a claim will be denied 
or approved by TSA. We considered and compared different 

models including single decision tree, boosted tree, GLM 
with regulations including LASSO, Ridge regression, and 
Elastic Net. The raw data set has 7 columns of predictors and 
one column of the target variable, which is Deny or Approve. 
The predictor columns include the Report.Lag, Airport.Code, 
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Airline.Name, Claim.Amount etc. There are a total of 24628 
cases of which 7270 are Approve cases and 17368 Deny cases. 
The Approve/Deny is replaced with a 0/1 target variable called 
value_flag. We examined each predictor variable on its own 
and with respect to value_flag. We tried 2 methods to construct 
and tune a single classification tree: the trial-and-error method, 
the cross-validation method. Both methods result in the same 
decision tree. The AUC of this tree is 0.78. Then a boosted tree 
is constructed. The AUC of the boosted tree for the test data is 
0.8694. Then we considered the binomial Generalized Linear 
Model (GLM) with logit link function using regularization. 
The three types of regulation methods tested are LASSO, Ridge 
regression, Elastic Net. The three regulations are not much 
different in AUC (0.86~0.87), but LASSO has the potential 
advantage of removing more features to build a simple model. 
So we choose LASSO GLM. This is also the final model 
selected. Because it is easier to interpret and has a comparable 
AUC with the boosted tree. 

We also demonstrated how to optimize the cutoff probability 
in the LASSO GLM to maximize the overall profit of the 
predictions. A spreadsheet demo is given to explain how the 
selected model can be easily used by the related industry 
professionals.

This research can be used by insurance companies to develop 
products such as luggage damage insurance, travel insurance. 
For instance, an actuary would use this research to first 
predict the probability that a luggage damage claim will be 
approved by TSA, then the denied claims will be covered by 
the insurance policy. Knowing this probability helps to price 
the proper premium rate. The passengers can also benefit from 
this research. An APP can be developed from our research to 
predict whether a claim made by the passenger will approve or 
not. Knowing this ahead of time helps the travelers decide how 
much time and effort they should spend on making the claim 
and following up on the claim status. The TSA can also benefit 
from this research to better manage their work. We know there is 
a delay from the time a claim is reported to the claim approval/
deny decision. If the TSA use our research to early estimate the 
future amount of approved claim based on the current reported 
claims information, that helps the TSA plan ahead financially 
for how much money they need to prepare for the claims to be 
paid. This is beneficial for stable operating.
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